Home About us Contact | |||
Soldering Iron (soldering + iron)
Selected AbstractsSharp Carbon-Nanotube Tips and Carbon-Nanotube Soldering Irons,ADVANCED MATERIALS, Issue 22 2009Abha Misra The nano-electron beam assisted fabrication of atomically sharp iron-based tips (see figure) and the creation of a nano-soldering iron for nano-interconnects using Fe-filled multiwalled carbon nanotubes (MWCNTs) is reported. The technique allows carving of a MWCNT and a control of the flow of the encapsulated metal outward by regulating the e-beam exposure time and spot size. [source] Self-Propagating Domino-like Reactions in Oxidized GraphiteADVANCED FUNCTIONAL MATERIALS, Issue 17 2010Franklin Kim Abstract Graphite oxide (GO) has received extensive interest as a precursor for the bulk production of graphene-based materials. Here, the highly energetic nature of GO, noted from the self-propagating thermal deoxygenating reaction observed in solid state, is explored. Although the resulting graphene product is quite stable against combustion even in a natural gas flame, its thermal stability is significantly reduced when contaminated with potassium salt by-products left from GO synthesis. In particular, the contaminated GO becomes highly flammable. A gentle touch with a hot soldering iron can trigger violent, catastrophic, total combustion of such GO films, which poses a serious fire hazard. This highlights the need for efficient sample purification methods. Typically, purification of GO is hindered by its tendency to gelate as the pH value increases during rinsing. A two-step, acid,acetone washing procedure is found to be effective for suppressing gelation and thus facilitating purification. Salt-induced flammability is alarming for the fire safety of large-scale manufacturing, processing, and storage of GO materials. However, the energy released from the deoxygenation of GO can also be harnessed to drive new reactions for creating graphene-based hybrid materials. Through such domino-like reactions, graphene sheets decorated with metal and metal oxide particles are synthesized using GO as the in situ power source. Enhanced electrochemical capacitance is observed for graphene sheets loaded with RuO2 nanoparticles. [source] Self-Propagating Domino-like Reactions in Oxidized GraphiteADVANCED FUNCTIONAL MATERIALS, Issue 17 2010Franklin Kim Abstract Graphite oxide (GO) has received extensive interest as a precursor for the bulk production of graphene-based materials. Here, the highly energetic nature of GO, noted from the self-propagating thermal deoxygenating reaction observed in solid state, is explored. Although the resulting graphene product is quite stable against combustion even in a natural gas flame, its thermal stability is significantly reduced when contaminated with potassium salt by-products left from GO synthesis. In particular, the contaminated GO becomes highly flammable. A gentle touch with a hot soldering iron can trigger violent, catastrophic, total combustion of such GO films, which poses a serious fire hazard. This highlights the need for efficient sample purification methods. Typically, purification of GO is hindered by its tendency to gelate as the pH value increases during rinsing. A two-step, acid,acetone washing procedure is found to be effective for suppressing gelation and thus facilitating purification. Salt-induced flammability is alarming for the fire safety of large-scale manufacturing, processing, and storage of GO materials. However, the energy released from the deoxygenation of GO can also be harnessed to drive new reactions for creating graphene-based hybrid materials. Through such domino-like reactions, graphene sheets decorated with metal and metal oxide particles are synthesized using GO as the in situ power source. Enhanced electrochemical capacitance is observed for graphene sheets loaded with RuO2 nanoparticles. [source] Frontal free-radical copolymerization of urethane,acrylatesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2006Ting Hu Abstract We report the first synthesis of urethane,acrylate copolymers via free-radical frontal polymerization. In a typical run, the appropriate amounts of the reactants (urethane,acrylate macromonomer and 2-hydroxyethyl acrylate) and initiator (ammonium persulfate) were dissolved in dimethyl sulfoxide. Frontal polymerization was initiated by the heating of the wall of the tube with a soldering iron, and the resultant hot fronts were allowed to self-propagate throughout the reaction vessel. Once it was initiated, no further energy was required for the polymerization to occur. The dependence of the front velocity and front temperature on the initiator concentration was investigated. The front temperatures were between 55 and 65 °C, depending on the persulfate concentration. Thermogravimetric analysis indicated that the urethane,acrylate copolymers had higher thermal stability than pure frontally prepared polyurethane. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3018,3024, 2006 [source] Blood Flow in Snake Infrared Organs: Response-Induced Changes in Individual VesselsMICROCIRCULATION, Issue 2 2007RICHARD C. GORIS ABSTRACT Objective: In the past the microkinetics of blood flow in the infrared pit organs of pit vipers has been studied with Doppler flowmetry using various infrared stimuli such as a human hand or soldering iron at various distances, lasers of various wavelengths, etc. Quick-acting variations in blood flow were recorded, and interpreted as a cooling mechanism for avoiding afterimage in the infrared receptors. However, the Doppler measurements provided only the summation of blood flow in a number of vessels covered by the sensing probe, but did not give data on flow in individual vessels. Methods: In the present work the authors introduced into the bloodstream of Gloydius and Trimeresurus pit vipers fluorescent microspheres labeled with fluorescein isothiocyanate (FITC) contained in a solution of FITC-dextran in physiological saline. They observed the passage of the microspheres through individual pit organ vessels with a fluorescent microscope to which was attached a high-speed video camera and image intensifier. Output of the camera was recorded before, during, and after stimulus with a 810-nm diode laser. Recording was done at 250 frames/s on high-speed video apparatus and downloaded to a hard disk. Disk files were loaded into proprietary software and particles were tracked and average velocities calculated. The data were then tested for significance by ANOVA with post hoc tests. Results: A significant (p < .05) increase in blood velocity was found at the focal point of the stimulus laser, but not anywhere removed from this point. Proximal severing of the pit sensory nerves caused degeneration of the pit receptor terminals and abolished stimulus-induced blood flow changes, but did not affect normal blood flow. Conclusions: The authors conclude that the receptors themselves are directly and locally controlling the smooth muscle elements of the blood vessels, in response to heating of the receptors by infrared radiation. They speculate that the heavy vascularization constitutes a cooling system for the radiation-encoding receptors, and further that the agent of control may be a volatile neuromediator such as nitric oxide. [source] |