Home About us Contact | |||
Solar UV Radiation (solar + uv_radiation)
Selected AbstractsIMPACTS OF SOLAR UV RADIATION ON THE PHOTOSYNTHESIS, GROWTH, AND UV-ABSORBING COMPOUNDS IN GRACILARIA LEMANEIFORMIS (RHODOPHYTA) GROWN AT DIFFERENT NITRATE CONCENTRATIONS,JOURNAL OF PHYCOLOGY, Issue 2 2009Yangqiao Zheng Solar ultraviolet radiation (UVR, 280,400 nm) is known to affect macroalgal physiology negatively, while nutrient availability may affect UV-absorbing compounds (UVACs) and sensitivity to UVR. However, little is known about the interactive effects of UVR and nitrate availability on macroalgal growth and photosynthesis. We investigated the growth and photosynthesis of the red alga Gracilaria lemaneiformis (Bory) Grev. at different levels of nitrate (natural or enriched nitrate levels of 41 or 300 and 600 ,M) under different solar radiation treatments with or without UVR. Nitrate-enrichment enhanced the growth, resulted in higher concentrations of UVACs, and led to negligible photoinhibition of photosynthesis even at noon in the presence of UVR. Net photosynthesis during the noon period was severely inhibited by both ultraviolet-A radiation (UVA) and ultraviolet-B radiation (UVB) in the thalli grown in seawater without enriched nitrate. The absorptivity of UVACs changed in response to changes in the PAR dose when the thalli were shifted back and forth from solar radiation to indoor low light, and exposure to UVR significantly induced the synthesis of UVACs. The thalli exposed to PAR alone exhibited higher growth rates than those that received PAR + UVA or PAR + UVA + UVB at the ambient or enriched nitrate concentrations. UVR inhibited growth approximately five times as much as it inhibited photosynthesis within a range of 60,120 ,g UVACs ˇ g,1 (fwt) when the thalli were grown under nitrate-enriched conditions. Such differential inhibition implies that other metabolic processes are more sensitive to solar UVR than photosynthesis. [source] PHOTOSYNTHETIC INSENSITIVITY OF THE TERRESTRIAL CYANOBACTERIUM NOSTOC FLAGELLIFORME TO SOLAR UV RADIATION WHILE REHYDRATED OR DESICCATED,JOURNAL OF PHYCOLOGY, Issue 4 2007Kunshan Gao Photosynthetic performance of the terrestrial cyanobacterium Nostoc flagelliforme (M. J. Berkeley et M. A. Curtis) Bornet et Flahault during rehydration and desiccation has been previously characterized, but little is known about the effects of solar UV radiation (280,400 nm) on this species. We investigated the photochemical activity during rehydration and subsequent desiccation while exposing the filamentous colonies to different solar radiation treatments. Photochemical activity could be reactivated by rehydration under full-spectrum solar radiation, the species being insensitive to both ultraviolet-A radiation (UVAR; 315,400 nm) and ultraviolet-B radiation (UVBR). When the rehydrated colonies were exposed for desiccation, the effective PSII photochemical yield was inhibited by visible radiation (PAR) at the initial stage of water loss, then increased with further decrease in water content, and reached its highest value at the water content of 10%,30%. However, no significant difference was observed among the radiation treatments except for the moment when they were desiccated to critical water content of about 2%,3%. At such a critical water content, significant reduction by UVBR of the effective quantum yield was observed in the colonies that were previously rehydrated under indoor light [without ultraviolet radiation (UVR)], but not in those reactivated under scattered or direct solar radiation (with UVR), indicating that preexposure to UVR during rehydration led to higher resistance to UVR during desiccation. The photosynthetic CO2 uptake by the desiccated colonies was enhanced by elevation of CO2 but was not affected by both UVAR and UVBR. It increased with enhanced desiccation to reach the maximal values at water content of 40%,50%. The UV-absorbing compounds and the colony sheath were suggested to play an important role in screening harmful UVR. [source] UV Exposition During Typical Lifestyle Behavior in an Urban EnvironmentPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2010Alois W. Schmalwieser In this study the personal exposure to solar UV radiation in an urban environment was measured. Lifestyle in an urban environment is characterized by staying indoors during most of the day. Furthermore, the ambient UV radiation is mitigated by shadowing by buildings. The aim of the study was to find out activities which may contribute to UV-induced health risk in a low exposure environment. Exposure was measured during typical outdoor activities: shopping, walking, sitting in a sidewalk café, cycling, sightseeing and at an open-air pool (solar elevation: 10°,70°). Measurements were taken with an optoelectronic device which was fixed on the chest. Besides the UV Index we used the sun burn time (SBT) for risk assessments. Generalization of our results was made by calculating ratios of personal exposure to the ambient UV radiation. UV exposure was by far the highest when our study subject stayed at the swimming pool. The SBT was around 30 min for melano-compromised skin type. For all other activities, except shopping, the SBT range up to 1 h. With respect to photodamage we found that at high solar elevation (>45°) photoprotective measures should be applied for certain activities even within a city. [source] Photosensitized DNA Damage and its Protection via a Novel Mechanism,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2007Yusuke Hiraku UVA, which accounts for approximately 95% of solar UV radiation, can cause mutations and skin cancer. Based mainly on the results of our study, this paper summarizes the mechanisms of UVA-induced DNA damage in the presence of various photosensitizers, and also proposes a new mechanism for its chemoprevention. UVA radiation induces DNA damage at the 5,-G of 5,-GG-3, sequence in double-stranded DNA through Type I mechanism, which involves electron transfer from guanine to activated photosensitizers. Endogenous sensitizers such as riboflavin and pterin derivatives and an exogenous sensitizer nalidixic acid mediate DNA photodamage via this mechanism. The major Type II mechanism involves the generation of singlet oxygen from photoactivated sensitizers, including hematoporphyrin and a fluoroquinolone antibacterial lomefloxacin, resulting in damage to guanines without preference for consecutive guanines. UVA also produces superoxide anion radical by an electron transfer from photoexcited sensitizers to oxygen (minor Type II mechanism), and DNA damage is induced by reactive species generated through the interaction of hydrogen peroxide with metal ions. The involvement of these mechanisms in UVA carcinogenesis is discussed. In addition, we found that xanthone derivatives inhibited DNA damage caused by photoexcited riboflavin via the quenching of its excited triplet state. It is thus considered that naturally occurring quenchers including xanthone derivatives may act as novel chemopreventive agents against photocarcinogenesis. [source] Effect of Cloud Cover on UVB Exposure Under Tree Canopies: Will Climate Change Affect UVB Exposure?PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2006Richard H. Grant ABSTRACT The effect of cloud cover on the amount of solar UV radiation that reaches pedestrians under tree cover was evaluated with a three-dimensional canopy radiation transport model. The spatial distribution of UVB irradiance at the base of a regular array of spherical tree crowns was modeled under the full range of sky conditions. The spatial mean relative irradiance (I), and erythemal irradiance of the entire below-canopy domain and the spatial mean relative irradiance and erythemal irradiance in the shaded regions of the domain were determined for solar zenith angles from 15° to 60°. The erythemal UV irradiance under skies with 50% or less cloud cover was not remarkably different from that under clear skies. In the shade, the actual irradiance was greater under partly cloudy than under clear skies. The mean ultraviolet protection factor for tree canopies under skies with 50% or less cloud cover was nearly equivalent to that for clear sky days. Regression equations of spatially averaged Ir. as a function of cloud cover fraction, solar zenith angle and canopy cover were used to predict the variation in erythemal irradiance in different land uses across Baltimore, MD. [source] Genome-wide Examination of the Natural Solar Radiation Response in Shewanella oneidensis MR-1PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2005Xiaoyun Qiu ABSTRACT We previously reported that Shewanella oneidensis MR-1 is extremely sensitive to natural solar radiation (NSR). Here we analyzed the global transcriptional profile of MR-1 during a 1-h recovering period after exposure to ambient solar light at a dose that yields about 20% survival rate on a Luria-Bertani (LB) plate. We observed the induction of DNA damage-repair genes, the SOS response as well as detoxification strategies that we previously observed in MR-1 following artificial UV-A irradiation. Few prophage-related genes were induced by natural solar UV radiation, however, in contrast to what was observed following artificial UV-B irradiation. Overall, the cellular response to NSR in MR-1 was more similar to that of UV-A than that of UV-B, but additional genes involved in detoxification were induced compared with induction by either UV-B or UV-A or their sum. Thus, oxidative stress appeared to contribute greatly to the NSR-induced cytotoxic effects in MR-1. A total of 29.1% of genome showed differential expression following NSR exposure, which is much greater than following exposure by UV-B (4.0%), UV-A (8.2%) or their sum (10.7%). Our data suggest that NSR may impact biological processes in a much more complex manner than previously thought. [source] Epigallocatechin-3-Gallate Inhibits Photocarcinogenesis Through Inhibition of Angiogenic Factors and Activation of CD8+ T Cells in TumorsPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2005Sudheer K. Mantena ABSTRACT There has been considerable interest in the use of botanical supplements to protect skin from the adverse effects of solar UV radiation, including photocarcinogenesis. We and others have shown that topical application of (,)-epigallocatechin-3-gallate (EGCG) from green tea prevents photocarcinogenesis in mice; however, the chemopreventive mechanism of EGCG in an in vivo tumor model is not clearly understood. In this study, UV-B-induced skin tumors with and without treatment of EGCG (,1 mg/cm2) and age-matched skin biopsies from SKH-1 hairless mice were used to identify potential molecular targets of skin cancer prevention by EGCG. These biopsies were analyzed for various biomarkers of angiogenesis and antitumor immune response using immunostaining, Western blotting and gelatinolytic zymography. We report that compared to non-EGCG-treated tumors, topical application of EGCG in UV-induced tumors resulted in inhibition of protein expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9, which play crucial roles in tumor growth and metastasis. In contrast, tissue inhibitor of MMP-1 (TIMP-1), which inhibits MMP activity, was increased in tumors. With respect to the tumor vasculature, EGCG decreased the expression of CD31, a cell surface marker of vascular endothelial cells, and inhibited the expression of vascular endothelial growth factor in tumors, which are essential for angiogenesis. EGCG inhibited proliferating cell nuclear antigen in UV-B-induced tumors as well. Additionally, higher numbers of cytotoxic T lymphocytes (CD8+ T cells) were detected in EGCG-treated tumors compared with non-EGCG-treated tumors. Together, these in vivo tumor data suggested that inhibition of photocarcinogenesis in mice by EGCG is associated with inhibition of angiogenic factors and induction of antitumor immune reactivity. [source] |