Home About us Contact | |||
Solar UV (solar + uv)
Terms modified by Solar UV Selected AbstractsDosimetric and Spectroradiometric Investigations of Glass-Filtered Solar UV,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007Alfio V. Parisi The aims of this study were to investigate how glass-filtered UV irradiances vary with glass thickness, lamination of the glass and the effect of solar zenith angle (SZA), and to measure the glass-filtered UV exposures to different receiving planes with a newly developed UVA dosimeter. Spectroradiometric and dosimetric techniques were employed in the experimental approach. The percentage of the glass-filtered solar UV compared to the unfiltered UV ranged from 59% to 70% and was influenced to a small extent by the glass thickness and the SZA. The laminated glass transmitted 11,12% and the windscreen glass transmitted 2.5,2.6%. The influence of the SZA was less for the thicker glass than it was for the thinner glass. The change in transmission was less than 14% for the SZA between 48° and 71°. There was a negligible influence due to the SZA on the glass-transmitted UV of the laminated and windscreen glass. The influence of the glass thickness in the range of 2,6 mm on the percentage transmission was less than 16%. The influence of the glass thickness and the SZA on the glass-transmitted UV has been incorporated in the use of a UVA dosimeter for the glass-transmitted UV exposures. The UVA dosimeter was employed in the field to measure the glass-filtered UV exposures to different receiving planes. The UVA dosimeter has the potential for personal solar UVA exposure measurements. [source] Molecular Responses to Stress Induced in Normal Human Caucasian Melanocytes in Culture by Exposure to Simulated Solar UV,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2005Laurent Marrot ABSTRACT Melanocytes play a central role in the response of skin to sunlight exposure. They are directly involved in UV-induced pigmentation as a defense mechanism. However, their alteration can lead to melanoma, a process where the role of sun overexposure is highly probable. The transformation process whereby UV damage may result in melanoma initiation is poorly understood, especially in terms of UV-induced genotoxicity in pigmented cells, where melanin can act either as a sunscreen or as a photosensitizer. The aim of this study was to analyze the behavior of melanocytes from fair skin under irradiation mimicking environmental sunlight in terms of spectral power distribution. To do this, normal human Caucasian melanocytes in culture were exposed to simulated solar UV (SSUV, 300,400 nm). Even at relatively high doses (until 20 min exposure, corresponding to 12 kJ/m2 UV-B and 110 kJ/m2 UV-A), cell death was limited, as shown by cell viability and low occurrence of apoptosis (caspase-3 activation). Moreover, p53 accumulation was three times lower in melanocytes than in unpigmented cells such as fibroblasts after SSUV exposure. However, an important fraction of melanocyte population was arrested in G2-M phase, and this correlated well with a high induction level of the gene GADD45, 4 h after exposure. Among the genes involved in DNA repair, gene XPC was the most inducible because its expression increased more than two-fold 15 h after a 20 min exposure, whereas expression of P48 was only slightly increased. In addition, an early induction of Heme Oxygenase 1 (HO1) gene, a typical response to oxidative stress, was also observed for the first time in melanocytes. Interestingly, this induction remained significant when melanocytes were exposed to UV-A radiation only (320,400 nm), and stimulation of melanogenesis before irradiation further increased HO1 induction. These results were obtained with normal human cells after exposure to SSUV radiation, which mimicked natural sunlight. They provide new data related to gene expression and suggest that melanin in light skin could contribute to sunlight-induced genotoxicity and maybe to melanocyte transformation. [source] Adaptive response of the skin to UVB damage: role of the p53 proteinINTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 1 2006L. Verschooten Synopsis Different adaptation mechanisms like heat shock response, cell cycle arrest and DNA repair, melanin pigmentation and thickening of the epidermis are present in the human skin to protect against the adverse effects of solar UV irradiation. When DNA damage is beyond repair, cells undergo apoptosis to prevent their replication. We discuss the current knowledge on these different adaptation mechanisms to UVB damage, the most energetic fraction of solar UV that reaches the skin. As p53 protein, the guardian of the genome, plays a key role in protective response to genotoxic damage, its role in this adaptive response of the skin to UV will be further discussed. Résumé Pour se protéger contre les effets néfastes de l'irradiation UV de la lumière solaire, la peau humaine dispose de différents mécanismes de protection adaptatifs: résistance au choc thermique, arrêt du cycle cellulaire et réparation de l'ADN, pigmentation mélanique et épaississement de l'épiderme. Quand les altèrations dépassent les capacités de réparation, les cellules entrent en apoptose pour empêcher la réplication d'une cellule avec de l'ADN endommagé. Dans cet article, on passe en revue les connaissances actuelles sur les différents mécanismes d'adaptation de la peau aux altérations provoquées par les UVB, la fraction la plus énergétique des UV solaires qui atteint la peau. Puisque la protéine P53, gardienne du génome, joue un rôle clé dans la réponse de protection aux altérations génotoxiques, son rôle dans la réponse d'adaptation de la peau aux UV sera discuté en détail. [source] Physical image vs structure relation: part 12 , structure of 2,2,5,5-tetramethyl-dihydro-furan-3-one oxime and its protonated forms through isomerization and NMR spectra,JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 6 2007Ryszard B. Nazarski Abstract The study of an isomeric A/B mixture of the title oxime 1, by photolytic or thermal E,Z -isomerization and NMR measurement including 1H{1H}-NOE difference spectra, led to assignment of the E configuration to its predominating form A. The 1H/13C data were interpreted in terms of steric overcrowding of both forms, especially of the thermolabile photoproduct B. Four classical (empirical) NMR methods of elucidating the oxime geometry were critically tested on these results. Unexpected vapor-phase photoconversion A,B in the window glass-filtered solar UV and spectroscopic findings on their protonated states were discussed, as well. The kinetically controlled formation of the N- protonated species (Z)- 5+ was proved experimentally. In addition, some 1H NMR assignments reported for structurally similar systems were rationalized (3 and 4) or revised (1 and 7,9) with the GIAO-DFT(B3LYP) and/or GIAO-HF calculational results. Copyright © 2007 John Wiley & Sons, Ltd. [source] A simple device for the evaluation of the UV radiation indexMETEOROLOGICAL APPLICATIONS, Issue 2 2003Giuseppe Rocco Casale The solar ultraviolet radiation (UV) flux density at the earth's surface depends on the incoming solar energy and the transmission properties of the atmosphere. UV radiation is strongly absorbed by ozone in the spectral range 200,310 nm, while the attenuation is increasingly weaker at longer wavelengths. Following the discovery of the Antarctic ozone hole in 1985, the risk of a possible UV increase at ground level, due to the observed stratospheric ozone depletion, has heightened the interest within the scientific community given the potentially harmful effects on terrestrial and aquatic ecosystems. Spectroradiometers, broad-band meters and dosimeters may be used for measurements of solar UV. In addition, radiation transfer models can be used to quantify UV irradiances at various times and locations, provided that the extraterrestrial solar radiation and the state of the atmosphere are known. Information about UV radiation at the earth's surface is given by the ultraviolet index ,UVI', which is defined as the effective integrated irradiance (280,400 nm) weighted by the erythemal action spectrum. The UV Index is widely used by many international weather services as an indicator of UV levels at the earth's surface providing public awareness of the effects of prolonged exposure to the sun's rays. The aim of this paper is to present a device capable of estimating the UV Index. This device is a compact disc, used as a sundial, and is based on modelled UV irradiances derived from the STAR radiative transfer model (System for Transfer of Atmospheric Radiation). The device was tested in an urban setting under clear sky conditions. Copyright © 2003 Royal Meteorological Society [source] Usage of the Polyphenylene Oxide Dosimeter to Measure Annual Solar Erythemal ExposuresPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2010Peter W. Schouten Poly (2, 6-dimethyl-1, 4-phenylene oxide) (PPO) film is a useful dosimetric tool for measuring solar UV in underwater and terrestrial environments. However, little is known about how the response of PPO changes with fluctuations in atmospheric ozone and also to seasonal variations. To resolve this issue this article presents a series of long-term in-air solar erythemal response measurements made over a year from 2007 to 2008 with PPO. This data showed that the PPO dose response varies with modulations of the solar spectrum resulting from changes in season and atmospheric ozone. From this, it was recommended that PPO only be calibrated in the season in which it is to be used at the same time as measurements were being made in the field. Extended solar UV measurements made by PPO with a neutral density filter (NDF) based on polyethylene are also detailed. These measurements showed that the lifetime of PPO could be extended by 5 days before saturation. As the dynamic range for PPO is known to be 5 days during summer at a sub-tropical location, the advantage of using the NDF is that half the number of dosimeters is needed to be fabricated and measured before and after exposure. [source] Bacterial Inactivation by Solar Ultraviolet Radiation Compared with Sensitivity to 254 nm RadiationPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2009Thomas P. Coohill Our goal was to derive a quantitative factor that would allow us to predict the solar sensitivity of vegetative bacterial cells to natural solar radiation from the wealth of data collected for cells exposed to UVC (254 nm) radiation. We constructed a solar effectiveness spectrum for inactivation of vegetative bacterial cells by combining the available action spectra for vegetative cell killing in the solar range with the natural sunlight spectrum that reaches the ground. We then analyzed previous studies reporting the effects of solar radiation on vegetative bacterial cells and on bacterial spores. Although UVC-sensitive cells were also more sensitive to solar radiation, we found no absolute numerical correlation between the relative solar sensitivity of vegetative cells and their sensitivity to 254 nm radiation. The sensitivity of bacterial spores to solar exposure during both summer and winter correlated closely to their UVC sensitivity. The estimates presented here should make it possible to reasonably predict the time it would take for natural solar UV to kill bacterial spores or with a lesser degree of accuracy, vegetative bacterial cells after dispersion from an infected host or after an accidental or intentional release. [source] Dosimetric and Spectroradiometric Investigations of Glass-Filtered Solar UV,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007Alfio V. Parisi The aims of this study were to investigate how glass-filtered UV irradiances vary with glass thickness, lamination of the glass and the effect of solar zenith angle (SZA), and to measure the glass-filtered UV exposures to different receiving planes with a newly developed UVA dosimeter. Spectroradiometric and dosimetric techniques were employed in the experimental approach. The percentage of the glass-filtered solar UV compared to the unfiltered UV ranged from 59% to 70% and was influenced to a small extent by the glass thickness and the SZA. The laminated glass transmitted 11,12% and the windscreen glass transmitted 2.5,2.6%. The influence of the SZA was less for the thicker glass than it was for the thinner glass. The change in transmission was less than 14% for the SZA between 48° and 71°. There was a negligible influence due to the SZA on the glass-transmitted UV of the laminated and windscreen glass. The influence of the glass thickness in the range of 2,6 mm on the percentage transmission was less than 16%. The influence of the glass thickness and the SZA on the glass-transmitted UV has been incorporated in the use of a UVA dosimeter for the glass-transmitted UV exposures. The UVA dosimeter was employed in the field to measure the glass-filtered UV exposures to different receiving planes. The UVA dosimeter has the potential for personal solar UVA exposure measurements. [source] Calculated Ultraviolet Exposure Levels for a Healthy Vitamin D StatusPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2006Ann R. Webb The dangers of overexposure to sunlight have been well publicized, but less attention has been given to an acknowledged benefit of exposure to UV radiation; that being the cutaneous synthesis of vitamin D3. Here we define a standard vitamin D dose on the basis of recently recommended requirements for vitamin D that take account of its risk reduction role in a variety of diseases, and present a web-based tool that enables the reader to calculate associated exposure times for any time and place using either default values or user-selected conditions. Either it is not possible to synthesize vitamin D3 at high latitudes in winter, or the exposure time required to reach a standard dose is sometimes impractical. Where solar UV is sufficient, a risk-benefit analysis of sunburn vs. vitamin D3 synthesis shows that the best time for brief sun exposure is in the middle of the day. For low solar elevation angles common at high latitudes, a fine line exists between adequate UV exposure for vitamin D3 synthesis and a risk of sun burn. [source] Radiation Sources Providing Increased UVNUVB Ratios Induce Photoprotection Dependent on the UVA Dose in Hairless MicePHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2006Vivienne E. Reeve ABSTRACT In studies involving mice in which doses of UVA (320,400 nm) and UVB (290,320 nm) radiation were administered alone or combined sequentially, we observed a protective effect of UVA against UVB-induced erythemdedema and systemic suppression of contact hypersensitivity. The UVA immunoprotection was mediated by the induction of the stress enzyme heme oxygenase-1 (HO-1) in the skin, protection of the cutaneous Th1 cytokines interferon-gM (IFN-,) and IL-12 and inhibition of the UVB-induced expression of the Th2 cytokine IL-10. In this study, we seek evidence for an immunological waveband interaction when UVA and UVB are administered concurrently to hairless mice as occurs during sunlight exposure in humans. A series of spectra providing varying ratios of UVA/UVB were developed, with the UVA ratio increased to approximately 3.5 times the UVA component in solar simulated UV (SSUV). We report that progressively increasing the UVA component of the radiation while maintaining a constant UVB dose resulted in a reduction of both the erythemdedema reaction and the degree of systemic immunosuppression, as measured as contact hypersensitivity. The UVA-enhanced immunoprotection was abrogated in mice treated with a specific HO enzyme inhibitor. UVA-enhanced radiation also upregulated the expression of cutaneous IFN-, and IL-12 and inhibited expression of both IL-6 and IL-10, compared with the activity of SSUV. The results were consistent with the previously characterized mechanisms of photoprotection by the UVA waveband alone and suggest that the UVA component of solar UV may have beneficial properties for humans. [source] Standard Ultraviolet Daylight for Nonextreme Exposure Conditions,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2005François J. Christiaens ABSTRACT The skin is exposed to ultraviolet radiation (UVR) from natural or artificial sources on a daily basis. The effects of chronic low dose exposure merit investigation, even when these effects are neither conspicuous nor clinically assessable. The purpose of the present study was to define a relative spectral UV irradiance that is representative of frequent nonextreme sun exposure conditions and therefore more appropriate for studies of the long-term and daily effects of solar UV on the skin. Solar spectral UV irradiance values were calculated for different dates and locations by using a radiative transfer model. The spectral irradiance values obtained when the solar elevation is lower than 45° were averaged. An important feature is the dUVA (320,400 nm) to dUVB (290,320 nm) irradiance values ratio, which was found to be 27.3 for the overall average. When the months corresponding to extreme irradiance values (low or high) were excluded from the calculations, the dUVA to dUVB ratio ranged from 27.2 to 27.5. The mean spectral irradiance of the model presented here represents environmental UV exposure conditions and can be used both as a standard to investigate the biological effects of a nonextreme UVR and to assess the effectiveness of products for daily skin protection. [source] Molecular Responses to Stress Induced in Normal Human Caucasian Melanocytes in Culture by Exposure to Simulated Solar UV,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2005Laurent Marrot ABSTRACT Melanocytes play a central role in the response of skin to sunlight exposure. They are directly involved in UV-induced pigmentation as a defense mechanism. However, their alteration can lead to melanoma, a process where the role of sun overexposure is highly probable. The transformation process whereby UV damage may result in melanoma initiation is poorly understood, especially in terms of UV-induced genotoxicity in pigmented cells, where melanin can act either as a sunscreen or as a photosensitizer. The aim of this study was to analyze the behavior of melanocytes from fair skin under irradiation mimicking environmental sunlight in terms of spectral power distribution. To do this, normal human Caucasian melanocytes in culture were exposed to simulated solar UV (SSUV, 300,400 nm). Even at relatively high doses (until 20 min exposure, corresponding to 12 kJ/m2 UV-B and 110 kJ/m2 UV-A), cell death was limited, as shown by cell viability and low occurrence of apoptosis (caspase-3 activation). Moreover, p53 accumulation was three times lower in melanocytes than in unpigmented cells such as fibroblasts after SSUV exposure. However, an important fraction of melanocyte population was arrested in G2-M phase, and this correlated well with a high induction level of the gene GADD45, 4 h after exposure. Among the genes involved in DNA repair, gene XPC was the most inducible because its expression increased more than two-fold 15 h after a 20 min exposure, whereas expression of P48 was only slightly increased. In addition, an early induction of Heme Oxygenase 1 (HO1) gene, a typical response to oxidative stress, was also observed for the first time in melanocytes. Interestingly, this induction remained significant when melanocytes were exposed to UV-A radiation only (320,400 nm), and stimulation of melanogenesis before irradiation further increased HO1 induction. These results were obtained with normal human cells after exposure to SSUV radiation, which mimicked natural sunlight. They provide new data related to gene expression and suggest that melanin in light skin could contribute to sunlight-induced genotoxicity and maybe to melanocyte transformation. [source] UV Exposure of Elementary School Children in Five Japanese Cities,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2005Masaji Ono ABSTRACT A 1 week UV-exposure measurement and outdoor-activity pattern survey was conducted for elementary school children for four seasons at five sites in Japan, i.e. Sapporo (43°05,N, altitude 40 m), Tsukuba (36°05,N, 20 m), Tokyo (35°40,N, 45 m), Miyazaki (31°60,N, 40 m) and Naha (26°10,N, 5 m), and UV exposure was measured directly and estimated using outdoor-activity records. The study site with largest UV exposure was Miyazaki, a southern rural area. Comparing the results for boys and girls, UV exposure was larger in boys. UV exposure was large in spring and summer and small in winter. The total amount of UV exposure in spring and summer contributed 57.7,73.4% of total exposure for the year. As a whole, 8.1% and 1.8% of the schoolchildren were exposed to more than 1 minimum erythemal dose (MED) and 2 MED of solar UV in a day, respectively. The estimated yearly UV exposure ranged from 49 207 J/m2 in Miyazaki to 31 520 J/m2 in Tsukuba. The actual UV exposure correlated to potential UV exposure, estimated using outdoor-activity records and ambient UV irradiance, but the ratio differed by season and site. The yearly average of percent UV exposure to ambient UV on a horizontal plane ranged from 9.9% in Tokyo to 4.0% in Naha. In the questionnaire survey on outdoor-activity pattern, a short question "How long did you spend time outdoors between 0900 and 1500 h?" gives the best estimates of UV exposure. [source] Effect of UV irradiation on type I collagen fibril formation in neutral collagen solutionsPHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 3 2001Julian M. Menter Background: Collagens have the well-known ability to spontaneously self-associate to form fibrils at physiological temperature and neutral pH in vitro and in vivo. Because solar UV may photochemically alter collagen, the kinetics of fibril formation may be modified. Thus, we have begun a systematic study of the effect of various UV wavebands on fibril formation. Methods: Citrate-soluble calf skin collagen (Elastin Products) was dissolved at 0.05% in 0.5 M HOAc, dialyzed over 2 days into two changes of 0.0327 M phosphate buffer, pH 7.0 at 4 °C, and centrifuged at 48 000×g. Photolysis was carried out at 4 °C with either (a) UVC (UVG,11 lamp), (b) filtered solar-simulating radiation (SSR) or UVA (SSR or UVL,21 lamp filtered with a 2.0 mm Schott WG 345 filter). Gelation was commenced by rapidly raising the temperature from 8 °C to 33 °C. Nucleation and growth were followed by turbidimetric measurements at 400 nm. Results: UVC radiation (0,17.3 J/cm2) resulted in a dose-dependent decrease in the rate of fibril growth. Under these conditions, concomitant collagen cross-linking and degradation occurred. Fibril nucleation, a prerequisite for growth, was rapid (threshold , 2 min) and was not affected by UVC, UVA or SSR. SSR (0,1320 J/cm2) caused a small decrease in growth rate and in the degree of fibril formation. UVA radiation (0,1080 J/cm2) had a similar effect. "Direct" photochemical damage thus paralleled absorption via various collagen chromophores, with UVC>SSR,UVA. The presence of riboflavin (RF) resulted in ground-state interactions that markedly altered both nucleation and growth kinetics. Irradiation with 29.6 J/cm2 UVA in the presence of RF photosensitizer caused relatively minor additional changes in fibrillation kinetics. Conclusions: These results collectively indicate that fibril formation is markedly dependent on specific ground state interactions and relatively insensitive to nonspecific UV damage. On the other hand, fibrils thus formed from photochemically altered collagen may have altered structural properties that could have subtle but unfavorable effects on the local dermal milieu in vivo. Notwithstanding, the relative insensitivity of fibrillogenesis to non-specific photochemical damage probably represents a favorable adaptation, overall, which tends to conserve the mechanical integrity of the skin. [source] |