Solar Ultraviolet Radiation (solar + ultraviolet_radiation)

Distribution by Scientific Domains


Selected Abstracts


Bacterial Inactivation by Solar Ultraviolet Radiation Compared with Sensitivity to 254 nm Radiation

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2009
Thomas P. Coohill
Our goal was to derive a quantitative factor that would allow us to predict the solar sensitivity of vegetative bacterial cells to natural solar radiation from the wealth of data collected for cells exposed to UVC (254 nm) radiation. We constructed a solar effectiveness spectrum for inactivation of vegetative bacterial cells by combining the available action spectra for vegetative cell killing in the solar range with the natural sunlight spectrum that reaches the ground. We then analyzed previous studies reporting the effects of solar radiation on vegetative bacterial cells and on bacterial spores. Although UVC-sensitive cells were also more sensitive to solar radiation, we found no absolute numerical correlation between the relative solar sensitivity of vegetative cells and their sensitivity to 254 nm radiation. The sensitivity of bacterial spores to solar exposure during both summer and winter correlated closely to their UVC sensitivity. The estimates presented here should make it possible to reasonably predict the time it would take for natural solar UV to kill bacterial spores or with a lesser degree of accuracy, vegetative bacterial cells after dispersion from an infected host or after an accidental or intentional release. [source]


Impact of Solar Ultraviolet Radiation on Marine Phytoplankton of Patagonia, Argentina,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2005
E. Walter Helbling
ABSTRACT Patagonia area is located in close proximity to the Antarctic ozone "hole" and thus receives enhanced ultraviolet B (UV-B) radiation (280,315 nm) in addition to the normal levels of ultraviolet A (UV-A; 315,400 nm) and photosynthetically available radiation (PAR; 400-700 nm). In marine ecosystems of Patagonia, normal ultraviolet radiation (UVR) levels affect phytoplankton assemblages during the three phases of the annual succession: (1) prebloom season (late summer-fall), (2) bloom season (winter-early spring) and (3) postbloom season (late spring-summer). Small-size cells characterize the pre-and postbloom communities, which have a relatively high photosynthetic inhibition because of high UVR levels during those seasons. During the bloom, characterized by micro-plankton diatoms, photosynthetic inhibition is low because of the low UVR levels reaching the earth's surface during winter; this community, however, is more sensitive to UV-B when inhibition is normalized by irradiance (i.e. biological weighting functions). In situ studies have shown that UVR significantly affects not only photosynthesis but also the DNA molecule, but these negative effects are rapidly reduced in the water column because of the differential attenuation of solar radiation. UVR also affects photosynthesis versus irradiance (P vs E) parameters of some natural phytoplankton assemblages (i.e. during the pre- but not during the postbloom season). However, there is a significant temporal variability of P vs E parameters, which are influenced by the nutrient status of cells and taxonomic composition; taxonomic composition is in turn associated with the stratification conditions (e.g. wind speed and duration). In Patagonia, wind speed is one of the most important variables that conditions the development of the winter bloom by regulating the depth of the upper mixed layer (UML) and hence the mean irradiance received by cells. Studies on the interactive effects of UVR and mixing show that responses of phytoplankton vary according to the taxonomic composition and cell structure of assemblages; therefore cells use UVR if >90% of the euphotic zone is being mixed. In fact, cell size plays a very important role when estimating the impact of UVR on phytoplankton, with large cells being more sensitive when determining photosynthesis inhibition, whereas small cells are more sensitive to DNA damage. Finally, in long-term experiments, it was determined that UVR can shape the diatom community structure in some assemblages of coastal waters, but it is virtually unknown how these changes affect the trophody-namics of marine systems. Future studies should consider the combined effects of UVR on both phytoplankton and grazers to establish potential changes in biodiversity of the area. [source]


CIE 151:2003 Spectral Weighting of Solar Ultraviolet Radiation

COLOR RESEARCH & APPLICATION, Issue 6 2003
Article first published online: 15 OCT 200
No abstract is available for this article. [source]


IMPACTS OF SOLAR UV RADIATION ON THE PHOTOSYNTHESIS, GROWTH, AND UV-ABSORBING COMPOUNDS IN GRACILARIA LEMANEIFORMIS (RHODOPHYTA) GROWN AT DIFFERENT NITRATE CONCENTRATIONS,

JOURNAL OF PHYCOLOGY, Issue 2 2009
Yangqiao Zheng
Solar ultraviolet radiation (UVR, 280,400 nm) is known to affect macroalgal physiology negatively, while nutrient availability may affect UV-absorbing compounds (UVACs) and sensitivity to UVR. However, little is known about the interactive effects of UVR and nitrate availability on macroalgal growth and photosynthesis. We investigated the growth and photosynthesis of the red alga Gracilaria lemaneiformis (Bory) Grev. at different levels of nitrate (natural or enriched nitrate levels of 41 or 300 and 600 ,M) under different solar radiation treatments with or without UVR. Nitrate-enrichment enhanced the growth, resulted in higher concentrations of UVACs, and led to negligible photoinhibition of photosynthesis even at noon in the presence of UVR. Net photosynthesis during the noon period was severely inhibited by both ultraviolet-A radiation (UVA) and ultraviolet-B radiation (UVB) in the thalli grown in seawater without enriched nitrate. The absorptivity of UVACs changed in response to changes in the PAR dose when the thalli were shifted back and forth from solar radiation to indoor low light, and exposure to UVR significantly induced the synthesis of UVACs. The thalli exposed to PAR alone exhibited higher growth rates than those that received PAR + UVA or PAR + UVA + UVB at the ambient or enriched nitrate concentrations. UVR inhibited growth approximately five times as much as it inhibited photosynthesis within a range of 60,120 ,g UVACs · g,1 (fwt) when the thalli were grown under nitrate-enriched conditions. Such differential inhibition implies that other metabolic processes are more sensitive to solar UVR than photosynthesis. [source]


Evaluation of a High Exposure Solar UV Dosimeter for Underwater Use

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
Peter W. Schouten
ABSTRACT Solar ultraviolet radiation (UV) is known to have a significant effect upon the marine ecosystem. This has been documented by many previous studies using a variety of measurement methods in aquatic environments such as oceans, streams and lakes. Evidence gathered from these investigations has shown that UVB radiation (280,320 nm) can negatively affect numerous aquatic life forms, while UVA radiation (320,400 nm) can both damage and possibly even repair certain types of underwater life. Chemical dosimeters such as polysulphone have been tested to record underwater UV exposures and in turn quantify the relationship between water column depth and dissolved organic carbon levels to the distribution of biologically damaging UV underwater. However, these studies have only been able to intercept UV exposures over relatively short time intervals. This paper reports on the evaluation of a high exposure UV dosimeter for underwater use. The UV dosimeter was fabricated from poly 2,6-dimethyl-1,4-phenylene oxide (PPO) film. This paper presents the dose response, cosine response, exposure additivity and watermarking effect relating to the PPO dosimeter as measured in a controlled underwater environment and will also detail the overnight dark reaction and UVA and visible radiation response of the PPO dosimeter, which can be used for error correction to improve the reliability of the UV data measured by the PPO dosimeters. These results show that this dosimeter has the potential for long-term underwater UV exposure measurements. [source]


Anthracene photoinduced toxicity to plhc-1 cell line (Poeciliopsis lucida) and the role of lipid peroxidation in toxicity

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2000
Jonghoon Choi
Abstract Many polycyclic aromatic hydrocarbons (PAHs) are acutely toxic to fish and other aquatic organisms in the presence of solar ultraviolet radiation (SUVR) of environmentally realistic intensities. In the present study, the photoinduced toxicity of a PAH (anthracene; ANT) to topminnow hepatoma cell line (PLHC-1) was assessed. After the toxicity was characterized, the role of lipid peroxidation in PAH photoinduced toxicity was examined by measuring lipid peroxidation products and by assessing the effect of lipid peroxidation antagonist (Trolox) treatment. In cytotoxicity tests using two assays (MTT, neutral red), the SUVR/ANT treatment elicited toxicity to PLHC-1 cells in a concentration- and SUVR (exposure duration and intensity)-dependent pattern. As found in previous organism-level studies, no significant cytotoxicity was observed in the cells exposed either to fluorescent light/ANT or to SUVR only. The SUVR/ANT treatment elicited the lipid peroxidation process and Trolox pretreatment significantly reduced SUVR/ANT-induced cell mortality. Microscopic observation showed that Trolox pretreatment relieved the SUVR/ANT-inflicted damage, such as cell shrinkage and membrane disruption. Together with a recent finding in our lab that increased production of superoxide anion and a lipid peroxidation product (malondialdehyde) was found in SUVR/ANT-treated fish microsomes, the present study suggests that reactive oxygen radical-induced lipid peroxidation is an important factor in PAH photoinduced toxicity to fish. [source]


Evidence of oxidative stress in bluegill sunfish (Lepomis macrochirus) liver microsomes simultaneously exposed to solar ultraviolet radiation and anthracene

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2000
Jonghoon Choi
Abstract Many polycyclic aromatic hydrocarbons (PAHs) are acutely toxic to fish and other aquatic organisms in the presence of environmentally realistic intensities of solar ultraviolet radiation (SUVR). However, the biochemical mechanism of this toxicity is not well established. In this study, increased levels of both reactive oxygen species production and lipid peroxidation were hypothesized as a toxic mechanism. To test this hypothesis, the production of superoxide anion and of a lipid peroxidation product (malondialdehyde) was measured in bluegill sunfish (Lepomis machrochirus) liver microsomes. These microsomes were exposed to a representative phototoxic PAH (anthracene [ANT]) and to SUVR and normal laboratory fluorescent light (FLU) in four different combinations: FLU + no ANT, FLU + ANT, SUVR + no ANT, and SUVR + ANT. The highest mean levels of both superoxide anion and malondialdehyde production were observed in the SUVR + ANT group, and these levels were significantly different (p < 0.05) from those in all other treatment groups. We conclude that the photoinduced toxicity of ANT, and possibly of other phototoxic PAHs, manifests at least in part through lipid peroxidation after increased production of reactive oxygen species. [source]


Maintenance of healthy skin: cleansing, moisturization, and ultraviolet protection

JOURNAL OF COSMETIC DERMATOLOGY, Issue 2007
J Frank Nash PhD
Summary Background, The human skin is exposed to an extraordinary hostile environment over the course of a lifetime. Whereas there are multiple product types that consumers may select to help preserve and protect the skin, at a minimum cleansing, moisturization, and protection against solar ultraviolet radiation are elements of any strategy designed for skin health. To achieve the greatest benefit from these treatment modalities, products must be carefully formulated, chosen, and used, since poorly designed or misused products may exacerbate symptoms associated with unhealthy skin. Aims, The objective of this review is to present the principle elements of cleansing, moisturization, and sun protection modalities that are, in some measure, responsible for maintaining healthy skin. Conclusion, Healthy skin is a universal desire of humans. The regular and proper use of cleansing, moisturization, and solar protection regimens plays a key role in maintaining skin health. These are lifetime practices wherein product technologies evolve even as the essential function remains. [source]


UVAI-induced Edema and Pyrimidine Dimers in Murine Skin,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2000
Ronald D. Ley
ABSTRACT The induction of edema and pyrimidine dimers in epidermal DNA was determined in the skin of SKH:HR1 mice exposed to graded doses of ultraviolet radiation AI (UVAI; 340,400 nm). Exposure to UVAI induced 1.6 ± 0.08 × 10,6 (mean ± standard error of mean) pyrimidine dimers per 108 Da of DNA per J/m2. Edema in irradiated animals was determined as an increase in skinfold thickness. A dose of 1.8 × 106 J/m2 of UVAI that resulted in a 50% increase in skinfold thickness (SFT50%) would have induced 1.0 × 105 dimers per basal cell genome. A similar increase in SFT induced by full spectrum solar ultraviolet radiation (290,400 nm) would accompany the induction of 11.0 × 105 pyrimidine dimers per basal cell genome. These results support a hypothesis that UVAI-induced pathological changes of the skin are mediated through the formation of nondimer photoproducts. [source]