Solar Neighbourhood (solar + neighbourhood)

Distribution by Scientific Domains


Selected Abstracts


Local kinematics and the local standard of rest

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010
Ralph Schönrich
ABSTRACT We re-examine the stellar kinematics of the solar neighbourhood in terms of the velocity ,, of the Sun with respect to the local standard of rest. We show that the classical determination of its component V, in the direction of Galactic rotation via Strömberg's relation is undermined by the metallicity gradient in the disc, which introduces a correlation between the colour of a group of stars and the radial gradients of its properties. Comparing the local stellar kinematics to a chemodynamical model which accounts for these effects, we obtain (U, V, W),= (11.1+0.69,0.75, 12.24+0.47,0.47, 7.25+0.37,0.36) km s,1, with additional systematic uncertainties ,(1, 2, 0.5) km s,1. In particular, V, is 7 km s,1 larger than previously estimated. The new values of (U, V, W), are extremely insensitive to the metallicity gradient within the disc. [source]


The tightening of wide binaries in dSph galaxies through dynamical friction as a test of the dark matter hypothesis

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2008
X. Hernandez
ABSTRACT We estimate the time-scales for orbital decay of wide binaries embedded within dark matter haloes, due to dynamical friction against the dark matter particles. We derive analytical scalings for this decay and calibrate and test them through the extensive use of N -body simulations, which accurately confirm the predicted temporal evolution. For density and velocity dispersion parameters as inferred for the dark matter haloes of local dSph galaxies, we show that the decay time-scales become shorter than the ages of the dSph stellar populations for binary stars composed of 1 M, stars, for initial separations larger than 0.1 pc. Such wide binaries are conspicuous and have been well measured in the solar neighbourhood. The prediction of the dark matter hypothesis is that they should now be absent from stellar populations embedded within low velocity dispersion, high-density dark mater haloes, as currently inferred for the local dSph galaxies, having since evolved into tighter binaries. Relevant empirical determinations of this will become technically feasible in the near future, and could provide evidence to discriminate between dark matter particle haloes or modified gravitational theories, to account for the high dispersion velocities measured for stars in local dSph galaxies. [source]


The Monitor project: the search for transits in the open cluster NGC 2362

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
Adam A. Miller
ABSTRACT We present the results of a systematic search for transiting planets in a ,5 Myr open cluster, NGC 2362. We observed ,1200 candidate cluster members, of which ,475 are believed to be genuine cluster members, for a total of ,100 h. We identify 15 light curves with reductions in flux that pass all our detection criteria, and six of the candidates have occultation depths compatible with a planetary companion. The variability in these six light curves would require very large planets to reproduce the observed transit depth. If we assume that none of our candidates are, in fact, planets then we can place upper limits on the fraction of stars with hot Jupiters (HJs) in NGC 2362. We obtain 99 per cent confidence upper limits of 0.22 and 0.70 on the fraction of stars with HJs (fp) for 1,3 and 3,10 d orbits, respectively, assuming all HJs have a planetary radius of 1.5RJup. These upper limits represent observational constraints on the number of stars with HJs at an age ,10 Myr, when the vast majority of stars are thought to have lost their protoplanetary discs. Finally, we extend our results to the entire Monitor project, a survey searching young, open clusters for planetary transits, and find that the survey as currently designed should be capable of placing upper limits on fp near the observed values of fp in the solar neighbourhood. [source]


Is the sky falling?

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
RAVE surveys, Searching for stellar streams in the local Milky Way disc in the CORAVEL
ABSTRACT We have searched for in-falling stellar streams on to the local Milky Way disc in the CORrelation RAdial VELocities (CORAVEL) and RAdial Velocity Experiment (RAVE) surveys. The CORAVEL survey consists of local dwarf stars (Nördstrom et al. Geneva,Copenhagen survey) and local Famaey et al. giant stars. We select RAVE stars with radial velocities that are sensitive to the Galactic vertical space velocity (Galactic latitude b < ,45°). Kuiper statistics have been employed to test the symmetry of the Galactic vertical velocity distribution functions in these samples for evidence of a net vertical flow that could be associated with a (tidal?) stream of stars with vertically coherent kinematics. In contrast to the ,Field of Streams' found in the outer halo, we find that the local volumes of the solar neighbourhood sampled by the CORAVEL dwarfs (complete within ,3 × 10,4 kpc3), CORAVEL giants (complete within ,5 × 10,2 kpc3) and RAVE (5,15 per cent complete within ,8 kpc3) are devoid of any vertically coherent streams containing hundreds of stars. This is sufficiently sensitive to allow our RAVE sample to rule out the passing of the tidal stream of the disrupting Sagittarius (Sgr) dwarf galaxy through the solar neighbourhood. This agrees with the most-recent determinations of its orbit and dissociates it from the Helmi et al. halo stream. Our constraints on the absence of the Sgr stream near the Sun could prove a useful tool for discriminating between Galactic potential models. The lack of a net vertical flow through the solar neighbourhood in the CORAVEL giants and RAVE samples argues against the Virgo overdensity crossing the disc near the Sun. There are no vertical streams in the CORAVEL giants and RAVE samples with stellar densities ,1.6 × 104 and 1.5 × 103 stars kpc,3, respectively, and therefore no evidence for locally enhanced dark matter. [source]


Revisiting two local constraints of the Galactic chemical evolution

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
M. Haywood
ABSTRACT I review the uncertainties in two observational local constraints of the Galactic disc chemical evolution: the metallicity distribution of long-lived dwarfs and the age,metallicity relation. Analysing most recent data, it is shown first that the observed metallicity distribution at solar galactocentric radius, designed with standard methods, is more fit to a closed-box model than to the infall metallicity distribution. We argue that this is due to the specific contribution of the thick-disc population, which has been overlooked both in the derivation of the observed metallicity distribution and in the standard chemical evolution models. Although this agreement disqualifies the metallicity distribution as the best supportive (indirect) evidence for infall, we argue that the evolution must be more complex than described by either the closed-box or the standard infall models. It is then shown that recent determinations of the age,metallicity distribution (AMD) from large Strömgren photometric surveys are dominated by noise resulting from systematic biases in metallicities and effective temperatures. These biases are evaluated and a new AMD is obtained, where particularities of the previous determinations are phased out. The new age,metallicity relation shows a mean increase limited to about a factor of 2 in Z over the disc age. It is shown that below 3 Gyr, the dispersion in metallicity is about 0.1 dex, which, given the observational uncertainties in the derived metallicities, is compatible with the small cosmic dispersion measured on the interstellar medium and meteoritic pre-solar dust grains. A population that is progressively older and more metal rich arises at a metallicity greater than that of the Hyades, to reach [Fe/H],+0.5 dex at ages greater than 5 Gyr. We suggest that this is best explained by radial migration. A symmetrical widening of the metallicity interval towards lower values is seen at about the same age, which is attributed to a similar cause. Finally, the new derived ages are sufficiently consistent that an age,metallicity relation within the thick disc is confirmed. These new features altogether draw a picture of the chemical evolution in the solar neighbourhood where dynamical effects and complexity in the AMD dominate, rather than a generalized high dispersion at all ages. [source]


Near-infrared imaging observations of the southern massive star-forming region G333.6,0.2

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2005
Takuya Fujiyoshi
ABSTRACT We present near-infrared broad-band JHK, images of the southern massive star-forming region G333.6,0.2. The slope of the K -luminosity function towards the region (0.24 ± 0.01) is considered to be equivalent to that expected for main-sequence stars in the solar neighbourhood. Point sources with their (H,K) colour greater than 1 are more likely to be located in extended emission and it is suggested that these objects are physically associated with the H ii region. [source]


Isochrone ages for field dwarfs: method and application to the age,metallicity relation

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2004
Frédéric Pont
ABSTRACT A new method is presented to compute age estimates from theoretical isochrones using temperature, luminosity and metallicity data for individual stars. Based on Bayesian probability theory, this method avoids the systematic biases affecting simpler strategies and provides reliable estimates of the age probability distribution function for late-type dwarfs. Basic assumptions concerning the a priori parameter distribution suitable for the solar neighbourhood are combined with the likelihood assigned to the observed data to yield the complete posterior age probability. This method is especially relevant for G dwarfs in the 3,15 Gyr range of ages, crucial to the study of the chemical and dynamical history of the Galaxy. In many cases, it yields markedly different results from the traditional approach of reading the derived age from the isochrone nearest to the data point. We show that the strongest process affecting the traditional approach is that of strongly favouring computed ages near the end-of-main-sequence lifetime. The Bayesian method compensates for this potential bias and generally assigns much higher probabilities to lower main-sequence ages, compared with short-lived evolved stages. This has a strong influence on any application to galactic studies, especially given the present uncertainties on the absolute temperature scale of the stellar evolution models. In particular, the known mismatch between the model predictions and the observations for moderately metal-poor dwarfs (,1 < [Fe/H] < ,0.3) has a dramatic effect on the traditional age determination. We apply our method to the classic sample of Edvardsson et al., who derived the age,metallicity relation (AMR) of 189 field dwarfs with precisely determined abundances. We show how much of the observed scatter in the AMR is caused by the interplay between the systematic biases affecting the traditional age determination, the colour mismatch with the evolution models and the presence of undetected binaries. Using new parallax, temperature and metallicity data, our age determination for the same sample indicates that the intrinsic dispersion in the AMR is at most 0.15 dex and probably lower. In particular, we show that old, metal-rich objects ([Fe/H], 0.0 dex, age > 5 Gyr) and young, metal-poor objects ([Fe/H] < ,0.5 dex, age < 6 Gyr) in many observed AMR plots are artefacts caused by too simple a treatment of the age determination. The incompatibility of those AMR plots with a well-mixed interstellar medium may therefore only be apparent. Incidentally, our results tend to restore confidence in the method of age determination from the chromospheric activity for field dwarfs. [source]


Surface abundances of light elements for a large sample of early B-type stars , III.

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2004
An analysis of helium lines in spectra of 102 stars
ABSTRACT Non-local thermodynamic equilibrium analysis of He i lines in spectra of 102 B stars is implemented in order to derive the helium abundance He/H, the microturbulent parameter Vt and the projected rotation velocity v sin i. A simultaneous determination of He/H and Vt for the stars is effected by analysing equivalent widths of the 4471- and 4922-Å lines primarily as indicators of He/H and the 4713-, 5016-, 5876- and 6678-Å lines primarily as indicators of Vt. The rotation velocities v sin i are found from profiles of the same lines. It is shown that, when Vt > 7 km s,1, the Vt(He i) values determined from He i lines are systematically overestimated as compared with the Vt(O ii, N ii) values derived from O ii and N ii lines. This discrepancy is especially appreciable for hot evolved B giants with Vt(He i) = 16,23 km s,1 and may indicate a failure of classical model atmospheres to represent the strong He i lines for these stars. Two programme stars, HR 1512 and 7651, are found to be helium-weak stars. The remaining 100 stars are divided into three groups according to their masses M. The microturbulent parameter Vt(He i) is low for all stars of group A (M= 4.1,6.9 M,) and for all stars with the relative ages t/tMS < 0.8 of group B (M= 7.0,11.2 M,). Their Vt(He i) values are within the 0 to 5 km s,1 range, as a rule; the mean value is Vt= 1.7 km s,1. Only evolved giants of group B, which are close to the termination of the main-sequence (MS) evolutionary phase (t/tMS > 0.8), show Vt(He i) up to 11 km s,1. The helium abundance He/H is correlated with the relative age t/tMS in both groups; the averaged He/H enhancement during the MS phase is 26 per cent. For group C, containing the most massive stars (M= 12.4,18.8 M,), the Vt(He i) values display a correlation with t/tMS, varying from 4 to 23 km s,1. The He/H determination for hot evolved B giants of the group with Vt(He i) > 15 km s,1 depends on a choice between the Vt(He i) and Vt(O ii, N ii) scales. The mean He/H enrichment by 67 per cent during the MS phase is found, if the abundances He/H are based on the Vt(O ii, N ii) scale; however, two evolved giants with especially high v sin i, HR 7446 and 7993, show the He/H enhancement by about a factor of 2.5. When using the same Vt scale, we found a trend of He/H with projected rotational velocities v sin i; a large dispersion for v sin i > 150 km s,1 can result from differences in masses M. A comparison with the stellar model computations with rotationally induced mixing shows that the observed helium enrichment during the MS phase can be explained by rotation with initial velocities 250,400 km s,1. The He/H distribution on M and v sin i based on the Vt(O ii, N ii) scale seems to be in better agreement with the theory than one based on the Vt(He i) scale. The mean value He/H = 0.10 derived for stars in the zero age main sequence (ZAMS) vicinity can be adopted as the typical initial helium abundance for early B stars in the solar neighbourhood. [source]


Simulations of the heating of the Galactic stellar disc

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2002
Jyrki Hänninen
ABSTRACT The velocity dispersion of nearby stars in the Galactic disc is well known to increase substantially with age; this is the so-called age,velocity relation, and is interpreted as a ,heating' of the disc as a function of time. We have studied the heating of the Galactic stellar disc caused by giant molecular clouds and halo black holes, via simulations of the orbits of tracer stars embedded in a patch of the local Galactic disc. We examine a range of masses and number densities of the giant molecular cloud and halo black hole perturbers. The heating of the stellar disc in the simulations is fitted with a simple power law of the form ,,t,, where , is the velocity dispersion of the tracer stars as a function of time, t. We also fit this form to the best determinations of the increase in the velocity dispersion as a function of time as derived from stars in the solar neighbourhood for which ages can be reliably assigned. Observationally, , is found to lie in the range 0.3,0.6, i.e. it remains poorly constrained and its determination is probably still dominated by systematic errors. Better constrained observationally is the ratio of the velocity dispersions of the stars in the vertical z and horizontal x directions (i.e. towards the Galactic Centre), ,z/,x= 0.5 ± 0.1. For the heating of the stellar disc caused by giant molecular clouds (GMCs) we derive a heating ,,t0.21, which differs somewhat from early (analytic) studies in which ,,t1/4. This confirms the well-known results that there are insufficient GMCs to heat the Galactic disc appropriately. A range of dark halo black hole scenarios are verified to heat the stellar disc as ,,t1/2 (as expected from analytical studies), and give ,z/,x in the range 0.5,0.6, which is consistent with observations. Black holes with a mass of 107 M, are our favoured disc heaters, although they are only marginally consistent with observations. Simulations featuring a combination of giant molecular clouds and halo black holes can explain the observed heating of the stellar disc, but since other perturbing mechanisms, such as spiral arms, are yet to be included, we regard this solution as being ad hoc. [source]


Two measures of the shape of the dark halo of the Milky Way

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2000
Rob P. Olling
In order to test the reliability of determinations of the shapes of dark-matter haloes of the galaxies, we have made such measurements for the Milky Way by two independent methods. First, we have combined the measurements of the overall mass distribution of the Milky Way derived from its rotation curve and the measurements of the amount of dark matter in the solar neighbourhood obtained from stellar kinematics to determine the flattening of the dark halo. Secondly, we have used the established technique based on the variation in thickness of the Milky Way's H i layer with radius: by assuming that the H i gas is in hydrostatic equilibrium in the gravitational potential of a galaxy, one can use the observed flaring of the gas layer to determine the shape of the dark halo. These techniques are found to produce a consistent estimate for the flattening of the dark-matter halo, with a shortest-to-longest axis ratio of q,0.8, but only if one adopts somewhat non-standard values for the distance to the Galactic centre, R0, and the local Galactic rotation speed, ,0. For consistency, one requires values of R0,7.6 kpc and ,0,190 km s,1. The results depend on the Galactic constants because the adopted values affect both distance measurements within the Milky Way and the shape of the rotation curve, which, in turn, alter the inferred halo shape. Although differing significantly from the current IAU-sanctioned values, these upper limits are consistent with all existing observational constraints. If future measurements confirm these lower values for the Galactic constants, then the validity of the gas-layer-flaring method will be confirmed. Further, dark-matter candidates such as cold molecular gas and massive decaying neutrinos, which predict very flat dark haloes with q,0.2, will be ruled out. Conversely, if the Galactic constants were found to be close to the more conventional values, then there would have to be some systematic error in the methods for measuring dark halo shapes, so the existing modelling techniques would have to be viewed with some scepticism. [source]


Open clusters and the galactic disk

ASTRONOMISCHE NACHRICHTEN, Issue 5 2010
S. Röser
Abstract It is textbook knowledge that open clusters are conspicuous members of the thin disk of our Galaxy, but their role as contributors to the stellar population of the disk was regarded as minor. Starting from a homogenous stellar sky survey, the ASCC-2.5, we revisited the population of open clusters in the solar neighbourhood from scratch. In the course of this enterprise we detected 130 formerly unknown open clusters, constructed volume- and magnitude-limited samples of clusters, re-determined distances, motions, sizes, ages, luminosities and masses of 650 open clusters. We derived the present-day luminosity and mass functions of open clusters (not the stellar mass function in open clusters), the cluster initial mass function CIMF and the formation rate of open clusters. We find that open clusters contributed around 40 percent to the stellar content of the disk during the history of our Galaxy. Hence, open clusters are important building blocks of the Galactic disk (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Kinematics and metallicity analysis for nearby F, G and K stars

ASTRONOMISCHE NACHRICHTEN, Issue 1 2009
S. Vidojevi
Abstract A sample containing 1 026 stars of spectral types F, G, and K, mainly dwarfs, from the solar neighbourhood with available space velocities and metallicities is treated. The treatment comprises a statistical analysis of the metallicity and velocity data and calculation of galactocentric orbits. Sample stars identified as members of the galactic halo are detached from the rest of the sample based on the values of their metallicities, velocity components and galactocentric orbits. In identifying halo stars a new, kinematical, criterion is proposed. Except one, these halo stars are the metal-poorest ones in the sample. Besides, they have very high velocities with respect to LSR. On the other hand, the separation between the thin disc and thick one is done statistically based on LSR space velocities, membership probability (Schwarzschild distribution with assumed parameters) and galactocentric orbits. In the metallicity these two groups are not much different. For each of the three subsamples the mean motion and velocity ellipsoid are calculated. The elements of the velocity ellipsoids agree well with the values found in the literature, especially for the thin disc. The fractions of the subsystems found for the present sample are: thin disc 93%, thick disc 6%, halo 1%. The sample stars established to be members of the thin disc are examined for existence of star streams. Traces of both, known and unknown, star streams are not found (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]