Solar Modules (solar + module)

Distribution by Scientific Domains


Selected Abstracts


Photovoltaic thin-film technology based on hydrogenated amorphous silicon

PROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 2 2002
P. Lechner
Solar modules based on amorphous silicon combine a number of properties that lead to a wide range of attractive applications, from watch dials to roof integration and semitransparent insulating glazing. The specificities of manufacturing are described, and it can be shown that they ultimately render competitive manufacturing costs and hence total system costs sufficiently low to offset the drawback of lower efficiencies. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Dynamic operation plan of a combined fuel cell cogeneration, solar module, and geo-thermal heat pump system using Genetic Algorithm

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 13 2007
Shin'ya Obara
Abstract A chromosome model that simulates the operation patterns of an energy system was introduced into a simple Genetic Algorithm, and a method of dynamic optimization was developed. This paper analyses the operation planning of an energy system that uses in combination a solar power module, proton-exchange membrane fuel cell cogeneration (PEMFC-CGS) with methanol steam reforming, a geo-thermal heat pump, heat storage and battery, commercial power, and a kerosene boiler. The hours of operation of each energy device and the rate of the energy output were calculated by having introduced the analysis program developed by this study. Three objective functions: (a) minimization of operation cost; (b) minimization of the error of demand-and-supply balance; and (c) minimization of the amount of greenhouse gas discharge were given to the optimization analysis of the system. Furthermore, the characteristics of the system operation planning under each objective function are described. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Operating schedule of a combined energy network system with fuel cell

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 13 2006
S. ObaraArticle first published online: 16 MAY 200
Abstract The chromosome model showing system operation pattern is applied to GA (genetic algorithm), and the method of optimization operation planning of energy system is developed. The optimization method of this operation planning was applied to the compound system of methanol-steam-reforming-type fuel cell, geothermal heat pump and the electrolysis tank of water. The operation planning was performed for the energy system using the energy demand pattern of the individual residence of Sapporo city. From analysis results, the amount of outputs of a solar module and the relation of the operation cost of the system, which are changed by the weather were clarified. The representation day in February of the ratio of the operation cost in case of (0% of output rates) the rainy weather to the time of fine weather (100% of output rates) is 1.12. And the representation day in July is 1.71. Furthermore, the optimal capacity of accumulation of electricity and thermal storage was estimated, and they are 308 and 23 MJ, respectively. Copyright © 2006 John Wiley & Sons, Ltd. [source]


New interdigital design for large area dye solar modules using a lead-free glass frit sealing

PROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 8 2006
R. Sastrawan
Abstract A new interdigital design for large area dye solar modules is developed for an area of 30×30,cm2. This design requires fewer holes in the glass substrate for electrolyte filling, than the conventional strip design. A complete manufacturing process of this module,ranging from screen printed layers to semi-automated colouring and electrolyte filling,in a laboratory-scale baseline is illustrated. As primary sealing method, a durable glass frit sealing is used. It is shown, that the lead (Pb) content present in many glass frit powders contaminates the catalytic platinum electrode during the sintering process, resulting in a lowering of the fill factor. A screen printable lead-free glass frit paste is developed, which solves this problem. Long term stability tests are presented on 2·5,cm2 dye solar cells, which have been completely sealed with glass frit. In consecutively performed accelerated ageing tests under 85°C in the dark (about 1400,h) and continuous illumination with visible light (1 sun, about 1700,h), a 2·5,cm2 dye solar cell with an electrolyte based on propylmethylimidazolium iodide showed an overall degradation of less than 5% in conversion efficiency. In a subsequently performed thermal cycling test (,40°C to +85°C, 50 cycles) a 2·5,cm2 dye solar cell with the same electrolyte composition also showed only a slight degradation of less than 5% in conversion efficiency. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Thin film solar modules: the low cost, high throughput and versatile alternative to Si wafers

PROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 5 2006
S. Hegedus
Abstract Thin film solar cells (TFSC) have passed adolescence and are ready to make a substantial contribution to the world's electricity generation. They can have advantages over c-Si solar modules in ease of large area, lower cost manufacturing and in several types of applications. Factors which limit TFSC module performance relative to champion cell performance are discussed along with the importance of increased throughput and yield. The consensus of several studies is that all TFSC can achieve costs below 1,$/W if manufactured at sufficiently large scale >100,MW using parallel lines of cloned equipment with high material utilization and spray-on encapsulants. There is significant new commercial interest in TFSC from small investors and large corporations, validating the thin film approach. Unique characteristics are discussed which give TFSC an advantage over c-Si in two specific markets: small rural solar home systems and building integrated photovoltaic installations. TFSC have outperformed c-Si in annual energy production (kWhrs/kW), have demonstrated outdoor durability comparable to c-Si and are being used in MW scale installations worldwide. The merits of the thin film approach cannot be judged on the basis of efficiency alone but must also account for module performance and potential for low cost. TFSC advocates should promote their unique virtues compared to c-Si: lower cost, higher kWhr/kW output, higher battery charging current, attractive visual appearance, flexible substrates, long-term stability comparable to c-Si, and multiple pathways for deposition with room for innovation and evolutionary improvement. There is a huge market for TFSC even at today's efficiency if costs can be reduced. A brief window of opportunity exists for TFSC over the next few years due the Si shortage. The demonstrated capabilities and advantages of TFSC must be proclaimed more persistently to funding decision-makers and customers without minimizing the remaining challenges. Copyright © 2006 John Wiley & Sons, Ltd. [source]