Home About us Contact | |||
Soybean Genotypes (soybean + genotype)
Selected AbstractsCOMPARISON OF INSTRUMENTAL METHODS FOR MEASURING SEED HARDNESS OF FOOD-GRADE SOYBEANJOURNAL OF TEXTURE STUDIES, Issue 1 2008BO ZHANG ABSTRACT Breeding specialty soybeans for the soyfood market requires proper methodology in evaluation of seed quality attributes. In this study, efficient methods that could be potentially used for testing soybean seed hardness were developed by examining different instruments and seed parameters. Five food-grade soybean genotypes with different seed sizes were used to determine seed water-absorption capacity and hardness. Water absorption capacity was expressed by swell ratios for seed weight, seed dimension, and volume of water changes before and after soaking. Seed hardness test was conducted by a one-bite method using a food texture analyzer equipped with five different probes. The results showed that hardness testing by a 75 mm cylinder with 10 steamed seeds, single blade with five steamed seeds, and shear cell with 30 g steamed seeds produced dependable and consistent results with low coefficient of variance. However, shear cell may not be practical for early plant selection in a breeding program due to a relatively large sample requirement. Seed size can be used as indirect selection indicators for seed hardness. PRACTICAL APPLICATIONS Seed hardness is an important factor in determining soybean suitability for natto production. This study used two texture analyzers equipped with five different probes to test hardness of five soybean genotypes with different seed size. The methodologies for testing the seed texture of soybean have been established, which can help regulate the seed hardness testing for commercial production and provide consistent hardness references for natto breeding programs and the seed industry. [source] Protein hydrolysates from ,-conglycinin enriched soybean genotypes inhibit lipid accumulation and inflammation in vitroMOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 8 2009Cristina Martinez-Villaluenga Abstract Obesity is a worldwide health concern and a well recognized predictor of premature mortality associated with a state of chronic inflammation. The objective was to evaluate the effect of soy protein hydrolysates (SPH) produced from different soybean genotypes by alcalase (SAH) or simulated gastrointestinal digestion (SGIH) on lipid accumulation in 3T3-L1 adipocytes. The anti-inflammatory effect of SPH produced by alcalase on LPS-induced macrophage RAW 264.7 cell line was also investigated. SAH (100 ,M) derived from soybean enriched in ,-conglycinin (BC) (up to 47% total protein) decreased lipid accumulation (33,37% inhibition) through downregulation of gene expression of lipoprotein lipase (LPL) and fatty acid synthase (FAS). SGIH (100 ,M) inhibited lipid accumulation to a lesser extent (8,14% inhibition) through inhibition of LPL gene expression. SAH (5 ,M) decreased the production of nitric oxide (NO) (18,35%) and prostaglandin E2 (PGE2) (47,71%) and the expression of inducible nitric oxide synthase (iNOS) (31,53%) and cycloxygenase-2 (COX-2) (30,52%). This is the first investigation showing that soy hydrolysates inhibit LPS-induced iNOS/NO and COX-2/PGE2 pathways in macrophages. Soybeans enriched in BCs can provide hydrolysates that limit fat accumulation in fat cells and inflammatory pathways in vitro and therefore warrant further studies as a healthful food. [source] The role of low soil temperature in the inhibition of growth and PSII function during dark chilling in soybean genotypes of contrasting tolerancePHYSIOLOGIA PLANTARUM, Issue 1 2007Abram J. Strauss Dark chilling affects growth and yield of warm-climate crops such as soybean [Glycine max (L.) Merr.]. Several studies have investigated chilling-stress effects on photosynthesis and other aspects of metabolism, but none have compared effects of whole-plant chilling (WPC; shoots and roots) with that of aboveground chilling in legumes. This is important because low root temperatures might induce additional constraints, such as inhibition of N2 fixation, thereby aggravating chilling-stress symptoms. Effects of dark chilling on PSII, shoot growth, leaf ureide content and photosynthetic capacity were studied in two soybean genotypes, Highveld Top (chilling tolerant) and PAN809 (chilling sensitive), in experiments comparing effects of WPC with that of shoot chilling (SC). Both treatments inhibited shoot growth in PAN809 but not Highveld Top. Also, WPC in PAN809 caused a decrease in leaf ureide content followed by severe chlorosis and alterations in O-J-I-P fluorescence-rise kinetics, distinct from SC. A noteworthy difference was the appearance of a ,K peak in the O-J-I-P fluorescence rise in response to WPC. These genotypic and treatment differences also reflected in the degree of inhibition of CO2 assimilation rates. The appearance of a ,K peak, coupled with growth inhibition, reduced ureide content, chlorosis and lower CO2 assimilation rates, provides mechanistic information about how WPC might have aggravated chilling-stress symptoms in PAN809. We introduce a model explaining how chilling soil temperatures might trigger N-limitation in sensitive genotypes and how characteristic changes in O-J-I-P fluorescence-rise kinetics are linked to changes in carbon and nitrogen metabolism. [source] |