Sowing Density (sowing + density)

Distribution by Scientific Domains


Selected Abstracts


Sowing density and harvest time affect fibre content in hemp (Cannabis sativa) through their effects on stem weight

ANNALS OF APPLIED BIOLOGY, Issue 2 2009
W. Westerhuis
Abstract Sowing density and harvest time are considered important crop management factors influencing fibre quantity and quality in hemp (Cannabis sativa). We investigated whether the effects of these factors are essentially different or that both factors affect stem weight and thereby total and long-fibre content. The effects of all combinations of three sowing densities and three harvest times were studied for six different stem parts. Almost 500 samples consisting of stem parts from 50 plants and with a length of 50 cm were tested. Fibres were extracted by a controlled warm-water retting procedure, followed by breaking and scutching. The initial sample weight was fractionated into retting losses, wood, tow and long fibre. In both Italy and the Netherlands, crops were successfully established with different stem densities (99,283 m,2), plant heights (146,211 cm) and stem diameters (4.5,8.4 mm) at harvest. Stem dry matter yields (6.8,11.7 Mg ha,1) increased with a delay in harvest time but were not affected by sowing density. Retting loss percentages were lower in lower stem parts and decreased with later harvest because maturation was associated with increasing amounts of fibre and wood. Within a certain stem part, however, the absolute retting losses were constant with harvest time. Multiple linear regression analyses showed that the amount of fibre in a hemp stem is almost completely determined by the weight and the position of that stem part. When the plant grows, the increase in dry matter is split up into fibres and wood in a fixed way. This total fibre/wood ratio was highest in the middle part of the stem and lower towards both bottom and top. Sowing density and harvest time effects were indirect through stem weight. The long-fibre weight per stem increased with the total fibre weight and hence with stem weight. Stem weight increased with harvest time; as harvest time did not affect plant density, the highest long-fibre yields were obtained at the last harvest time. The long fibre/total fibre ratio was lowest in the bottom 5 cm of the stems but similar for all other parts. Sowing density and harvest time effects again were indirect. Fibre percentages in retted hemp decreased with increasing stem weights towards a level that is presumably a variety characteristic. The dry matter increase between harvests, however, is much more important with respect to total and long-fibre yield. [source]


Procedure for separating the selection effect from other effects in diversity,productivity relationship

ECOLOGY LETTERS, Issue 6 2001
paèková
In a greenhouse pot experiment we cultivated six meadow species in a replacement series design. The plants were grown at two sowing densities in monocultures and all possible species combinations. Our aim was to separate the selection effect from other diversity effects. This distinction is based on the notion that true overyielding is not a consequence of the selection effect. We suggest a hierarchical procedure, which is based on a repeated division of samples into the pots with the most productive species present and missing. Overyielding can be then demonstrated by a positive dependence of productivity on species richness in the subsets with the most productive species present. Although we found a strong dependence of biomass on species richness in the entire data set, the hierarchical method revealed no evidence of overyielding. Above-ground biomass in a monoculture was a good predictor of species success in a species mix. [source]


Sowing density and harvest time affect fibre content in hemp (Cannabis sativa) through their effects on stem weight

ANNALS OF APPLIED BIOLOGY, Issue 2 2009
W. Westerhuis
Abstract Sowing density and harvest time are considered important crop management factors influencing fibre quantity and quality in hemp (Cannabis sativa). We investigated whether the effects of these factors are essentially different or that both factors affect stem weight and thereby total and long-fibre content. The effects of all combinations of three sowing densities and three harvest times were studied for six different stem parts. Almost 500 samples consisting of stem parts from 50 plants and with a length of 50 cm were tested. Fibres were extracted by a controlled warm-water retting procedure, followed by breaking and scutching. The initial sample weight was fractionated into retting losses, wood, tow and long fibre. In both Italy and the Netherlands, crops were successfully established with different stem densities (99,283 m,2), plant heights (146,211 cm) and stem diameters (4.5,8.4 mm) at harvest. Stem dry matter yields (6.8,11.7 Mg ha,1) increased with a delay in harvest time but were not affected by sowing density. Retting loss percentages were lower in lower stem parts and decreased with later harvest because maturation was associated with increasing amounts of fibre and wood. Within a certain stem part, however, the absolute retting losses were constant with harvest time. Multiple linear regression analyses showed that the amount of fibre in a hemp stem is almost completely determined by the weight and the position of that stem part. When the plant grows, the increase in dry matter is split up into fibres and wood in a fixed way. This total fibre/wood ratio was highest in the middle part of the stem and lower towards both bottom and top. Sowing density and harvest time effects were indirect through stem weight. The long-fibre weight per stem increased with the total fibre weight and hence with stem weight. Stem weight increased with harvest time; as harvest time did not affect plant density, the highest long-fibre yields were obtained at the last harvest time. The long fibre/total fibre ratio was lowest in the bottom 5 cm of the stems but similar for all other parts. Sowing density and harvest time effects again were indirect. Fibre percentages in retted hemp decreased with increasing stem weights towards a level that is presumably a variety characteristic. The dry matter increase between harvests, however, is much more important with respect to total and long-fibre yield. [source]


Effect of Different Crop Densities of Winter Wheat on Recovery of Nitrogen in Crop and Soil within the Growth Period

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2001
K. Blankenau
Previous experiments have shown that, at harvest of winter wheat, recovery of fertilizer N applied in early spring [tillering, Zadok's growth stage (GS) 25] is lower than that of N applied later in the growth period. This can be explained by losses and immobilization of N, which might be higher between GS 25 and stem elongation (GS 31). It was hypothesized that a higher crop density (i.e. more plants per unit area) results in an increased uptake of fertilizer N applied at GS 25, so that less fertilizer N is subject to losses and immobilization. Different crop densities of winter wheat at GS 25 were established by sowing densities of 100 seeds m,2 (Slow), 375 seeds m,2 (Scfp= common farming practice) and 650 seeds m,2 (Shigh) in autumn. The effect of sowing density on crop N uptake and apparent fertilizer N recovery (aFNrec = N in fertilized treatments , N in unfertilized treatments) in crops and soil mineral N (Nmin), as well as on lost and immobilized N (i.e. non-recovered N = N rate , aFNrec), was investigated for two periods after N application at GS 25 [i.e. from GS 25 to 15 days later (GS 25 + 15d), and from GS 25 + 15d to GS 31] and in a third period between GS 31 and harvest (i.e. after second and third N applications). Fertilizer N rates varied at GS 25 (0, 43 and 103 kg N ha,1), GS 31 (0 and 30 kg N ha,1) and ear emergence (0, 30 and 60 kg ha,1). At GS 25 + 15d, non-recovered N was highest (up to 33 kg N ha,1 and up to 74 kg N ha,1 at N rates of 43 and 103 kg N ha,1, respectively) due to low crop N uptake after the first N dressing. Non-recovered N was not affected by sowing density. Re-mineralization during later growth stages indicated that non-recovered N had been immobilized. N uptake rates from the second and third N applications were lowest for Slow, so non-recovered N at harvest was highest for Slow. Although non-recovered N was similar for Scfp and Shigh, the highest grain yields were found at Scfp and N dressings of 43 + 30 + 60 kg N ha,1. This combination of sowing density and N rates was the closest to common farming practice. Grain yields were lower for Shigh than for Scfp, presumably due to high competition between plants for nutrients and water. In conclusion, reducing or increasing sowing density compared to Scfp did not reduce immobilization (and losses) of fertilizer N and did not result in increased fertilizer N use efficiency or grain yields. Einfluß unterschiedlicher pflanzendichten von Winterweizen auf die Wiederfindung von Stickstoff in Pflanze und Boden während der Vegetationsperiode Aus Wintergetreideversuchen ist bekannt, daß zur Ernte die Wiederfindung von Düngerstickstoff aus der Andüngung (Bestockung, [GS-Skala nach Zadok] GS 25) im Aufwuchs und in mineralischer Form im Boden (Nmin) niedriger ist als die von Düngerstickstoff der Schosser-und Ährengaben. Dies kann auf höhere Verluste bzw. eine höhere Immobilisation von Düngerstickstoff zwischen GS 25 und Schoßbeginn zurückgeführt werden, da hier die N-Aufnahme der Pflanzen im Vergleich zu späteren Wachstumsstadien gering ist. Daraus wurde abgeleitet, daß eine Erhöhung der Pflanzendichte zu einer erhöhten Aufnahme von früh gedüngtem N führen könnte, so daß weniger Dünger-N für Verlust- und Immobilisationsprozesse im Boden verbleibt. Unterschiedliche Pflanzendichten wurden durch unterschiedliche Aussaatstärken im Herbst erreicht (Slow= 100 Körner m,2, Scfp [herkömmliche Praxis]= 375 Körner m,2, Shigh= 650 Körner m,2). In der folgenden Vegetationsperiode wurde der Einfluß der verschiedenen Aussaatstärken auf die N-Aufnahme, die apparente Wiederfindung von Dünger-N (aFNrec = N in gedüngten , N in ungedüngten Prüfgliedern) in Pflanzen und Nmin, sowie auf potentielle Verluste und Immobilisation von Dünger-N (N-Defizit = N-Düngung , aFNrec) für zwei Phasen im Zeitraum zwischen der ersten N-Gabe (GS 25) und der Schossergabe zu GS 31 (d. h. zwischen GS 25 und 15 Tagen später [GS 25 + 15d] und von GS 25 + 15d bis GS 31), sowie zwischen GS 31 und der Ernte (d. h. nach der zweiten und dritten N-Gabe) untersucht. Die N-Düngung variierte zu den Terminen GS 25 (0, 43, 103 kg N ha,1), GS 31 (0, 30 kg N ha,1) und zum Ährenschieben (0, 30, 60 kg N ha,1). Unabhängig von der Aussaatstärke war das N-Defizit zum Termin GS 25 + 15d am höchsten (bis zu 33 kg N ha,1 und 74 kg N ha,1 bei einer N-Düngung von 43 bzw. 103 kg N ha,1), da die N-Aufnahme durch die Pflanzen während der Bestockungsphase am geringsten war. Das N-Defizit zeigt vornehmlich immobilisierten N an, da zu späteren Terminen eine Re-Mobilisation von N auftrat. Zwischen GS 31 und der Ernte wurden für die Aussaatstärke Slow die geringsten Aufnahmeraten von Düngerstickstoff aus der Schosser- und Ährengabe errechnet, so daß für Slow die höchsten N-Defizitmengen ermittelt wurden. Obwohl die N-Defizitmengen für Scfp und Shigh annähernd gleich waren, wurden bei N-Düngung von 43 + 30 + 60 kg N ha,1 für Scfp die höchsten Kornerträge erzielt. Diese Kombination von Aussaatstärke und N-Düngung kann als praxisüblich bezeichnet werden. Für Shigh wurden vermutlich niedrigere Kornerträge erzielt, weil die Konkurrenz um Nährstoffe und Wasser zwischen den Pflanzen aufgrund der hohen Pflanzendichte am intensivsten war. Die Ergebnisse lassen den Schluß zu, daß eine Verringerung oder Erhöhung der Pflanzendichte über entsprechende Aussaatstärken nicht zu einer Reduktion der Dünger-N-Immobilisation (oder von N-Verlusten) führt und demnach auch nicht die Dünger-N-Ausnutzung durch die Bestände erhöht wird. [source]