Sorption Curve (sorption + curve)

Distribution by Scientific Domains


Selected Abstracts


Water sorption kinetics in light-cured poly-HEMA and poly(HEMA- co -TEGDMA); determination of the self-diffusion coefficient by new iterative methods

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2007
Irini D. Sideridou
Abstract The present investigation is concerned with the determination of self-diffusion coefficient (D) of water in methacrylate-based biomaterials following Fickian sorption by two new methods: the Iterative and the Graphical methods. The D value is traditionally determined by means of the initial slope of the corresponding sorption curve and the so-called Stefan's approximation. The proposed methods using equations without approximations and data resulting from the whole sorption range reach to accurate values of D, even when the sorption curve does not present an initial linear portion. In addition to D, the Graphical method allows the extrapolation of the mass of the sorbed water at equilibrium (M,), even when the equilibrium specimen's mass fluctuates around its limited value (m,). The test of the proposed procedures by means of ideal and Monte Carlo simulated data revealed that these methods are fairly applicable. The obtained D values compared with those determined by means of the Stephan's method revealed that the proposed methods provide more accurate results. Finally, the proposed methods were successfully applied to the experimental determination of the diffusion coefficient of water (50°C) in the homopolymer of 2-hydroxyethyl methacrylate (HEMA) and in the copolymer of HEMA with triethylene glycol dimethacrylate (98/2 mol/mol). These polymers were prepared by light curing (, = 470 nm) at room temperature in presence of camphorquinone and N,N -dimethylaminoethyl methacrylate as initiator. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 [source]


Sorption kinetics of ethanol/water solution by dimethacrylate-based dental resins and resin composites

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2007
Irini D. Sideridou
Abstract In the present investigation the sorption,desorption kinetics of 75 vol % ethanol/water solution by dimethacrylate-based dental resins and resin composites was studied in detail. The resins examined were made by light-curing of bisphenol A glycol dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), bisphenol A ethoxylated dimethacrylate (Bis-EMA), and mixtures of these monomers. The resin composites were prepared from two commercial light-cured restorative materials (Z100 MP and Filtek Z250), the resin matrix of which is based on copolymers of the above-mentioned monomers. Ethanol/water sorption/desorption was examined in both equilibrium and dynamic conditions in two adjacent sorption,desorption cycles. For all the materials studied, it was found that the amount of ethanol/water sorbed or desorbed was always larger than the corresponding one reported in literature in case of water immersion. It was also observed that the chemical structure of the monomers used for the preparation of the resins directly affects the amount of solvent sorbed or desorbed, as well as sorption kinetics, while desorption rate was nearly unaffected. In the case of composites studied, it seems that the sorption/desorption process is not influenced much by the presence of filler. Furthermore, diffusion coefficients calculated for the resins were larger than those of the composites and were always higher during desorption than during sorption. Finally, an interesting finding concerning the rate of ethanol/water sorption was that all resins and composites followed Fickian diffusion kinetics during almost the whole sorption curve; however, during desorption the experimental data were overestimated by the theoretical model. Instead, it was found that a dual diffusion,relaxation model was able to accurately predict experimental data during the whole desorption curve. Kinetic relaxation parameters, together with diffusion coefficients, are reported for all resins and composites. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source]


Effect of temperature and initial moisture content on sorption isotherms of banana dried by tunnel drier

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 8 2008
Zhengyong Yan
Summary Sorption isotherms of intermediate moisture content (IMC) products are essential to predict shelf-life of packaged moisture-sensitive product by modelling moisture uptake during storage and distribution. The effect of temperature and initial moisture content (MC) of IMC banana on the relationship between MC and water activity were investigated. Raw bananas were dried in a tunnel dryer at 2% relative humidity (RH), 70 °C, and a 3.2 ± 0.2 m s,1 air velocity. Drying procedure was carried out a number of times until various IMC levels were obtained (5%, 14%, 22% and 33% db for banana). Sorption isotherms of bananas were determined at 10, 20, 30 and 40 °C. The initial MC of IMC banana had no significant effect on the relationship between MC and water activity according to statistical analysis. All the sorption curves were found to be Type II. BET, GAB, modified GAB, Oswin, Halsey and modified Freundlich models were fitted to the data and it was found that the best results were obtained with a modified Freundlich equation. A secondary modified Freundlich model was built accounting for the effect of aw and temperature on the sample MC. [source]