Home About us Contact | |||
Soret Region (soret + region)
Selected AbstractsThermally induced conformational changes in horseradish peroxidaseFEBS JOURNAL, Issue 1 2001David G. Pina Detailed differential scanning calorimetry (DSC), steady-state tryptophan fluorescence and far-UV and visible CD studies, together with enzymatic assays, were carried out to monitor the thermal denaturation of horseradish peroxidase isoenzyme c (HRPc) at pH 3.0. The spectral parameters were complementary to the highly sensitive but integral method of DSC. Thus, changes in far-UV CD corresponded to changes in the overall secondary structure of the enzyme, while that in the Soret region, as well as changes in intrinsic tryptophan fluorescence emission, corresponded to changes in the tertiary structure of the enzyme. The results, supported by data about changes in enzymatic activity with temperature, show that thermally induced transitions for peroxidase are irreversible and strongly dependent upon the scan rate, suggesting that denaturation is under kinetic control. It is shown that the process of HRPc denaturation can be interpreted with sufficient accuracy in terms of the simple kinetic scheme where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state. On the basis of this model, the parameters of the Arrhenius equation were calculated. [source] Role of Environmental Factors on the Structure and Spectroscopic Response of 5,-DNA,Porphyrin Conjugates Caused by Changes in the Porphyrin,Porphyrin InteractionsCHEMISTRY - A EUROPEAN JOURNAL, Issue 44 2009Angela Mammana Dr. Abstract We have explored the utility, strength, and limitation of through-space exciton-coupled circular dichroism in determination of the secondary structure of optically active chromophoric nanoarrays using the example of end-capped porphyrin, and metalloporphyrin,oligodeoxynucleotide conjugates. We put special emphasis on the explanation of the origin and significance of the distinctive multiple bands in the CD spectra (trisignate and tetrasignate CD bands). Such CD profiles are often observed in chiral aggregates or multichromophoric arrays but have never before been studied in detail. We found that variation of temperature and ionic strength has a profound effect on the geometry of the porphyrin,DNA conjugates and thus the nature of electronic interactions. At lower temperatures and in the absence of NaCl all three 5,-DNA,porphyrin conjugates display negative bisignate CD exciton couplets of variable intensity in the Soret region resulting from through-space interaction between the electric transition dipole moments of the two end-capped porphyrins. As the temperature is raised these exciton couplets are transformed into single positive bands originating from the porphyrin,single-strand DNA interactions. At higher ionic strengths and low temperatures, multisignate CD bands are observed in the porphyrin Soret region. These CD signature bands originate from a combination of intermolecular, end-to-end porphyrin,porphyrin stacking between duplexes and porphyrin,DNA interactions. The intermolecular aggregation was confirmed by fluorescence and absorption spectroscopy and resonance light scattering. DeVoe theoretical CD calculations, in conjunction with molecular dynamics simulations and Monte Carlo conformational searches, were used to mimic the observed bisignate exciton-coupled CD spectra as well as multiple CD bands. Calculations correctly predicted the sign and shape of the experimentally observed CD spectra. These studies reveal that the exciton-coupled circular dichroism is a very useful technique for the determination of the structure of optically active arrays. [source] Circular dichroism and the interactions of water soluble porphyrins with DNA,A minireviewCHIRALITY, Issue 4 2003Robert F. Pasternack Abstract The size, sign, and profile of induced circular dichroism (CD) features in the Soret region are reliable indicators of the binding modes of porphyrins and metalloporphyrins to DNA. Porphyrins shown (using such CD criteria) to be intercalators in monodispersed DNA duplexes prove extremely useful for the detection and characterization of organized, condensed forms of nucleic acids (,-condensates). In addition, certain select porphyrin derivatives can form extended assemblies on nonaggregated DNA templates. A combination of CD and resonance light scattering (RLS) measurements allows for sensitive detection and characterization of these porphyrin arrays. Chirality 15:329,332, 2003. © 2003 Wiley-Liss, Inc. [source] |