Home About us Contact | |||
Sorbent Material (sorbent + material)
Selected AbstractsOil Spill Cleanup from Sea Water by Sorbent MaterialsCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 12 2005A. Bayat Abstract Three sorbents were compared in order to determine their potential for oil spill cleanup. Polypropylene nonwoven web, rice hull, and bagasse with two different particle sizes were evaluated in terms of oil sorption capacities and oil recovery efficiencies. Polypropylene can sorb almost 7 to 9 times its weight from different oils. Bagasse, 18 to 45 mesh size, follows polypropylene as the second sorbent in oil spill cleanup. Bagasse, 14 to 18 mesh size, and rice hull have comparable oil sorption capacities, which are lower than those of the two former sorbents. It was found that oil viscosity plays an important role in oil sorption by sorbents. All adsorbents used in this work could remove the oil from the surface of the water preferentially. [source] Removal of toxic metal ions from aqueous systems by biosorptive flotationJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 8 2002Anastasios I Zouboulis Abstract Biosorptive flotation was used as a combined operation for the simultaneous abstraction of nickel, copper and zinc ions from aqueous streams. Laboratory-scale batch experiments, as well as pilot-scale continuous experiments, have been conducted. Grape stalks, a by-product of the winery industry, were used as sorbent material. The experimental procedure consisted of two consecutive stages: (i) biosorption, and (ii) flotation. The possibility of reusing biomass, after appropriate elution, was also examined. The main parameters examined were biomass concentration, particle size of sorbent, surfactant concentration, pH and flocculation. Flotation removals, following laboratory-scale experiments, were found to be in the order of 100, 85 and 70% for copper, zinc and nickel, respectively. In pilot-scale experiments, biomass sorption capacities were determined as 25 for copper, 81 for zinc and 7,µmol,dm,3 for nickel. The order of biomass affinity regarding the studied metals was Cu,>,Zn,>,Ni. Short retention time and high effectiveness suggest that biosorptive flotation is a promising treatment process for the removal of toxic metals from contaminated aqueous solutions. © 2002 Society of Chemical Industry [source] Sensing of toxic metals through pH changes using a hybrid sorbent material: Concept and experimental validationAICHE JOURNAL, Issue 11 2009Prasun K. Chatterjee Abstract This article reports a new hybrid sorbent material that is capable of detecting trace concentration of toxic metals, such as zinc, lead, copper, nickel, etc., through pH changes only. The material is essentially a composite granular material synthesized through rapid fusion of a mixture of amorphous hydrated ferric oxide (HFO) and akermanite or calcium magnesium silicate (Ca2MgSi2O7). When a water sample is rapidly passed through a mini-column containing this hybrid material, effluent pH at the exit always remains alkaline (,9.0) because of slow hydrolysis of akermanite and steady release of hydroxyl (OH,) ions. This exit solution turns pink through the addition of a phenolphthalein indicator. Commonly encountered electrolytes containing sodium, calcium, chloride, and sulfate have no impact on the exit pH from the mini-column. However, when trace concentration of a heavy metal (say lead) is present in the sample water, a considerable drop in pH (>2 units) is observed for the exiting solution. At this point, the solution turns colorless through the addition of a phenolphthalein indicator. Moreover, the change in the slope of pH, i.e., ,dpH/dBV, provides a sharp, noticeable peak for each toxic metal where BV is the bed volumes of solution fed. The technique allowed detection of zinc and lead through pH swings in synthesized samples, spiked Bethlehem City water, and also in Lehigh River water in the presence of phosphate and natural organic matter (NOM). Using a simple preconcentration technique, lower than 10 ,g/l of lead was detected with a significant peak. From a mechanistic viewpoint, high sorption affinity of HFO surface sites toward toxic metal cations, ability of akermanite to maintain near-constant alkaline pH for a prolonged period through slow hydrolysis and labile metal-hydroxy complex formation causing dissipation of OH, ions from the aqueous phase provide a synergy that allows detection of toxic metals at concentrations well below 100 ,g/l through pH changes. Nearly all previous investigations pertaining to toxic metals sensing use metal-selective enzymes or organic chromophores. This simple-to-operate technique using an inexpensive hybrid material may find widespread applications in the developing world for rapid detection of toxic metals through pH changes. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Potential sources of background contaminants in solid phase extraction and microextractionJOURNAL OF SEPARATION SCIENCE, JSS, Issue 7 2007Robert Stiles Abstract A study to identify the sources of background contamination from SPE, using a C-18 sorbent, and solid-phase microextraction (SPME), using a 70 ,m carbowax/divinylbenzene (CW/DVB) fiber, was carried out. To determine the source of contamination, each material used in the procedure was isolated and examined for their contribution. The solid-phase column components examined were: sorbent material and frits, column housings and each solvent used to elute analytes off the column. The components examined in the SPME procedure were: SPME fiber, SPME vials, water (HPLC grade), and salt (sodium chloride) used to increase the ionic strength. The majority of the background contaminants from SPE were found to be from the SPE sorbent material and frits. The class of contaminants extracted during a blank extraction were phthalates and other plasticizers used during the manufacturing process. All had blank levels corresponding to measured concentrations below 2 ng/mL, except for undecane, which had a concentration of 5.4 ng/mL. The most prevalent contaminants in the SPME blank procedure are 1,9-nonanediol, a mixture of phthalates and highly bis- substituted phenols. All the concentrations were below 2 ng/mL, with the exception of bis (2-ethylhexyl) phthalate, which had concentrations ranging from 5 to 20 ng/mL. [source] The Stability of Collected Human Scent Under Various Environmental Conditions,JOURNAL OF FORENSIC SCIENCES, Issue 6 2009Davia T. Hudson Ph.D. Abstract:, Human scent evidence collected from objects at a crime scene is used for scent discrimination with specially trained canines. Storage of the scent evidence is usually required yet no optimized storage protocol has been determined. Storage containers including glass, polyethylene, and aluminized pouches were evaluated to determine the optimal medium for storing human scent evidence of which glass was determined to be the optimal storage matrix. Hand odor samples were collected on three different sorbent materials, sealed in glass vials and subjected to different storage environments including room temperature, ,80°C conditions, dark storage, and UVA/UVB light exposure over a 7-week period. Volatile organic compounds (VOCs) in the headspace of the samples were extracted and identified using solid-phase micro-extraction,gas chromatography/mass spectrometry (SPME,GC/MS). Three-dimensional covariance mapping showed that glass containers subjected to minimal UVA/UVB light exposure provide the most stable environment for stored human scent samples. [source] |