Home About us Contact | |||
Somatosensory Areas (somatosensory + area)
Selected AbstractsPostnatal changes of vesicular glutamate transporter (VGluT)1 and VGluT2 immunoreactivities and their colocalization in the mouse forebrainTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2005Kouichi Nakamura Abstract Vesicular glutamate transporter 1 (VGluT1) and VGluT2 accumulate neurotransmitter glutamate into synaptic vesicles at presynaptic terminals, and their antibodies are thus considered to be a good marker for glutamatergic axon terminals. In the present study, we investigated the postnatal development and maturation of glutamatergic neuronal systems by single- and double-immunolabelings for VGluT1 and VGluT2 in mouse forebrain including the telencephalon and diencephalon. VGluT2 immunoreactivity was widely distributed in the forebrain, particularly in the diencephalon, from postnatal day 0 (P0) to adulthood, suggesting relatively early maturation of VGluT2-loaded glutamatergic axons. In contrast, VGluT1 immunoreactivity was intense only in the limbic regions at P0, and drastically increased in the other telencephalic and diencephalic regions during three postnatal weeks. Interestingly, VGluT1 immunoreactivity was frequently colocalized with VGluT2 immunoreactivity at single axon terminal-like profiles in layer IV of the primary somatosensory area from P5 to P10 and in the ventral posteromedial thalamic nucleus from P0 to P14. This was in sharp contrast to the finding that almost no colocalization was found in glomeruli of the olfactory bulb, patchy regions of the caudate-putamen, and the ventral posterolateral thalamic nucleus, where moderate to intense immunoreactivities for VGluT1 and VGluT2 were intermingled with each other in neuropil during postnatal development. The present results indicate that VGluT2-loaded glutamatergic axons maturate earlier than VGluT1-laden axons in the mouse telencephalic and diencephalic regions, and suggest that VGluT1 plays a transient developmental role in some glutamatergic systems that mainly use VGluT2 in the adulthood. J. Comp. Neurol. 492:263,288, 2005. © 2005 Wiley-Liss, Inc. [source] Somatosensory working memory performance in humans depends on both engagement and disengagement of regions in a distributed networkHUMAN BRAIN MAPPING, Issue 1 2010Saskia Haegens Abstract Successful working memory (WM) requires the engagement of relevant brain areas but possibly also the disengagement of irrelevant areas. We used magnetoencephalography (MEG) to elucidate the temporal dynamics of areas involved in a somatosensory WM task. We found an increase in gamma band activity in the primary and secondary somatosensory areas during encoding and retention, respectively. This was accompanied by an increase of alpha band activity over task-irrelevant regions including posterior and ipsilateral somatosensory cortex. Importantly, the alpha band increase was strongest during successful WM performance. Furthermore, we found frontal gamma band activity that correlated both with behavioral performance and the alpha band increase. We suggest that somatosensory gamma band activity reflects maintenance and attention-related components of WM operations, whereas alpha band activity reflects frontally controlled disengagement of task-irrelevant regions. Our results demonstrate that resource allocation involving the engagement of task-relevant and disengagement of task-irrelevant regions is needed for optimal task execution. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. [source] Selective visuo-haptic processing of shape and textureHUMAN BRAIN MAPPING, Issue 10 2008Randall Stilla Abstract Previous functional neuroimaging studies have described shape-selectivity for haptic stimuli in many cerebral cortical regions, of which some are also visually shape-selective. However, the literature is equivocal on the existence of haptic or visuo-haptic texture-selectivity. We report here on a human functional magnetic resonance imaging (fMRI) study in which shape and texture perception were contrasted using haptic stimuli presented to the right hand, and visual stimuli presented centrally. Bilateral selectivity for shape, with overlap between modalities, was found in a dorsal set of parietal areas: the postcentral sulcus and anterior, posterior and ventral parts of the intraparietal sulcus (IPS); as well as ventrally in the lateral occipital complex. The magnitude of visually- and haptically-evoked activity was significantly correlated across subjects in the left posterior IPS and right lateral occipital complex, suggesting that these areas specifically house representations of object shape. Haptic shape-selectivity was also found in the left postcentral gyrus, the left lingual gyrus, and a number of frontal cortical sites. Haptic texture-selectivity was found in ventral somatosensory areas: the parietal operculum and posterior insula bilaterally, as well as in the right medial occipital cortex, overlapping with a medial occipital cortical region, which was texture-selective for visual stimuli. The present report corroborates and elaborates previous suggestions of specialized visuo-haptic processing of texture and shape. Hum Brain Mapp 2008. © 2007 Wiley-Liss, Inc. [source] Neural substrates of tactile object recognition: An fMRI studyHUMAN BRAIN MAPPING, Issue 4 2004Catherine L. Reed Abstract A functional magnetic resonance imaging (fMRI) study was conducted during which seven subjects carried out naturalistic tactile object recognition (TOR) of real objects. Activation maps, conjunctions across subjects, were compared between tasks involving TOR of common real objects, palpation of "nonsense" objects, and rest. The tactile tasks involved similar motor and sensory stimulation, allowing higher tactile recognition processes to be isolated. Compared to nonsense object palpation, the most prominent activation evoked by TOR was in secondary somatosensory areas in the parietal operculum (SII) and insula, confirming a modality-specific path for TOR. Prominent activation was also present in medial and lateral secondary motor cortices, but not in primary motor areas, supporting the high level of sensory and motor integration characteristic of object recognition in the tactile modality. Activation in a lateral occipitotemporal area associated previously with visual object recognition may support cross-modal collateral activation. Finally, activation in medial temporal and prefrontal areas may reflect a common final pathway of modality-independent object recognition. This study suggests that TOR involves a complex network including parietal and insular somatosensory association cortices, as well as occipitotemporal visual areas, prefrontal, and medial temporal supramodal areas, and medial and lateral secondary motor cortices. It confirms the involvement of somatosensory association areas in the recognition component of TOR, and the existence of a ventrolateral somatosensory pathway for TOR in intact subjects. It challenges the results of previous studies that emphasize the role of visual cortex rather than somatosensory association cortices in higher-level somatosensory cognition. Hum. Brain Mapping 21:236,246, 2004. © 2004 Wiley-Liss, Inc. [source] Role of the somatosensory system in primary dystoniaMOVEMENT DISORDERS, Issue 6 2003Michele Tinazzi MD Abstract The pathophysiology of dystonia is still not fully understood, but it is widely held that a dysfunction of the corticostriatal,thalamocortical motor circuits plays a major role in the pathophysiology of this syndrome. Although the most dramatic symptoms in dystonia seem to be motor in nature, marked somatosensory perceptual deficits are also present in this disease. In addition, several lines of evidence, including neurophysiological, neuroimaging and experimental findings, suggest that both motor and somatosensory functions may be defective in dystonia. Consequently, abnormal processing of the somatosensory input in the central nervous system may lead to inefficient sensorimotor integration, thus contributing substantially to the generation of dystonic movements. Whether somatosensory abnormalities are capable of triggering dystonia is an issue warranting further study. Although it seems unlikely that abnormal somatosensory input is the only drive to dystonia, it might be more correlated to the development of focal hand than generalized dystonia because local somesthetic factors are more selectively involved in the former than in the latter where, instead it seems to be a widespread deficit in processing sensory stimuli of different modality. Because basal ganglia and motor areas are heavily connected not only with somatosensory areas, but also with visual and acoustic areas, it is possible that abnormalities of other sensory modalities, such as visual and acoustic, may also be implicated in the pathophysiology of more severe forms of primary dystonia. Further studies have to be addressed to the assessment of the role of sensory modalities and their interaction on the pathophysiology of different forms of primary dystonia. © 2003 Movement Disorder Society [source] |