Home About us Contact | |||
Soil Origin (soil + origin)
Selected AbstractsAbundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loamENVIRONMENTAL MICROBIOLOGY, Issue 6 2008Ju-pei Shen Summary The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities under different long-term (17 years) fertilization practices were investigated using real-time polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE). A sandy loam with pH (H2O) ranging from 8.3 to 8.7 was sampled in years 2006 and 2007, including seven fertilization treatments of control without fertilizers (CK), those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): NP, NK, PK and NPK, half chemical fertilizers NPK plus half organic manure (1/2OMN) and organic manure (OM). The highest bacterial amoA gene copy numbers were found in those treatments receiving N fertilizer. The archaeal amoA gene copy numbers ranging from 1.54 × 107 to 4.25 × 107 per gram of dry soil were significantly higher than those of bacterial amoA genes, ranging from 1.24 × 105 to 2.79 × 106 per gram of dry soil, which indicated a potential role of AOA in nitrification. Ammonia-oxidizing bacteria abundance had significant correlations with soil pH and potential nitrification rates. Denaturing gradient gel electrophoresis patterns revealed that the fertilization resulted in an obvious change of the AOB community, while no significant change of the AOA community was observed among different treatments. Phylogenetic analysis showed a dominance of Nitrosospira -like sequences, while three bands were affiliated with the Nitrosomonas genus. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). These results suggest that long-term fertilization had a significant impact on AOB abundance and composition, while minimal on AOA in the alkaline soil. [source] Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practicesENVIRONMENTAL MICROBIOLOGY, Issue 9 2007Ji-zheng He Summary The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated by using quantitative real-time polymerase chain reaction, cloning and sequencing approaches based on amoA genes. The soil, classified as agri-udic ferrosols with pH (H2O) ranging from 3.7 to 6.0, was sampled in summer and winter from long-term field experimental plots which had received 16 years continuous fertilization treatments, including fallow (CK0), control without fertilizers (CK) and those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): N, NP, NK, PK, NPK and NPK plus organic manure (OM). Population sizes of AOB and AOA changed greatly in response to the different fertilization treatments. The NPK + OM treatment had the highest copy numbers of AOB and AOA amoA genes among the treatments that received mineral fertilizers, whereas the lowest copy numbers were recorded in the N treatment. Ammonia-oxidizing archaea were more abundant than AOB in all the corresponding treatments, with AOA to AOB ratios ranging from 1.02 to 12.36. Significant positive correlations were observed among the population sizes of AOB and AOA, soil pH and potential nitrification rates, indicating that both AOB and AOA played an important role in ammonia oxidation in the soil. Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from different treatments were affiliated with Nitrosospira or Nitrosospira- like species and grouped into cluster 3, and little difference in AOB community composition was recorded among different treatments. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). Cluster M dominated exclusively in the N, NP, NK and PK treatments, indicating a pronounced difference in the community composition of AOA in response to the long-term fertilization treatments. These findings could be fundamental to improve our understanding of the importance of both AOB and AOA in the cycling of nitrogen and other nutrients in terrestrial ecosystems. [source] Nitrification in terrestrial hot springs of Iceland and KamchatkaFEMS MICROBIOLOGY ECOLOGY, Issue 2 2008Laila J. Reigstad Abstract Archaea have been detected recently as a major and often dominant component of the microbial communities performing ammonia oxidation in terrestrial and marine environments. In a molecular survey of archaeal ammonia monooxygenase (AMO) genes in terrestrial hot springs of Iceland and Kamchatka, the amoA gene encoding the ,-subunit of AMO was detected in a total of 14 hot springs out of the 22 investigated. Most of these amoA -positive hot springs had temperatures between 82 and 97 °C and pH range between 2.5 and 7. In phylogenetic analyses, these amoA genes formed three independent lineages within the known sequence clusters of marine or soil origin. Furthermore, in situ gross nitrification rates in Icelandic hot springs were estimated by the pool dilution technique directly on site. At temperatures above 80 °C, between 56 and 159 ,mol NO3, L,1 mud per day was produced. Furthermore, addition of ammonium to the hot spring samples before incubation yielded a more than twofold higher potential nitrification rate, indicating that the process was limited by ammonia supply. Our data provide evidence for an active role of archaea in nitrification of hot springs in a wide range of pH values and at a high temperature. [source] Plant,soil feedback induces shifts in biomass allocation in the invasive plant Chromolaena odorataJOURNAL OF ECOLOGY, Issue 6 2009Mariska Te Beest Summary 1. ,Soil communities and their interactions with plants may play a major role in determining the success of invasive species. However, rigorous investigations of this idea using cross-continental comparisons, including native and invasive plant populations, are still scarce. 2. ,We investigated if interactions with the soil community affect the growth and biomass allocation of the (sub)tropical invasive shrub Chromolaena odorata. We performed a cross-continental comparison with both native and non-native-range soil and native and non-native-range plant populations in two glasshouse experiments. 3. ,Results are interpreted in the light of three prominent hypotheses that explain the dominance of invasive plants in the non-native range: the enemy release hypothesis, the evolution of increased competitive ability hypothesis and the accumulation of local pathogens hypothesis. 4. ,Our results show that C. odorata performed significantly better when grown in soil pre-cultured by a plant species other than C. odorata. Soil communities from the native and non-native ranges did not differ in their effect on C. odorata performance. However, soil origin had a significant effect on plant allocation responses. 5. ,Non-native C. odorata plants increased relative allocation to stem biomass and height growth when confronted with soil communities from the non-native range. This is a plastic response that may allow species to be more successful when competing for light. This response differed between native and non-native-range populations, suggesting that selection may have taken place during the process of invasion. Whether this plastic response to soil organisms will indeed select for increased competitive ability needs further study. 6. ,The native grass Panicum maximum did not perform worse when grown in soil pre-cultured by C. odorata. Therefore, our results did not support the accumulation of local pathogens hypothesis. 7. ,Synthesis. Non-native C. odorata did not show release from soil-borne enemies compared to its native range. However, non-native plants responded to soil biota from the non-native range by enhanced allocation in stem biomass and height growth. This response can affect the competitive balance between native and invasive species. The evolutionary potential of this soil biota-induced change in plant biomass allocation needs further study. [source] |