Home About us Contact | |||
Soil Microorganisms (soil + microorganism)
Selected AbstractsModulation of plant ethylene levels by the bacterial enzyme ACC deaminaseFEMS MICROBIOLOGY LETTERS, Issue 1 2005Bernard R. Glick Abstract Soil microorganisms that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase promote plant growth by sequestering and cleaving plant-produced ACC, and thereby lowering the level of ethylene in the plant. Decreased ethylene levels allows the plant to be more resistant to a wide variety of environmental stresses. Here, the biochemistry of ACC deaminase; the environmental distribution, regulation, evolution and expression of ACC deaminase genes; and information regarding the effect of this enzyme on different plants is documented and discussed. [source] Soil microorganisms in coastal foredunes control the ectoparasitic root-feeding nematode Tylenchorhynchus ventralis by local interactionsFUNCTIONAL ECOLOGY, Issue 3 2009Anna M. Pi, kiewicz Summary 1In natural grassland ecosystems, root-feeding nematodes and insects are the dominant below-ground herbivores. In coastal foredunes, the ectoparasitic nematode Tylenchorhynchus ventralis would be a major root herbivore if not strongly controlled by soil microorganisms. Here, we examined if the suppressive effects of the microbial enemies of T. ventralis act by local interactions such as predation, parasitism or antagonism, or local induction of plant defence, or by non-local interactions, such as systemic effects when microorganisms in one section of the plant roots can affect nematode control in another section of the root system. We show that abundance of T. ventralis in the root zone of the grass Ammophila arenaria is suppressed by local interactions. 2We compared local vs. non-local control of nematodes by a natural community of soil microorganisms in a split-root experiment, where nematodes and microbes were inoculated to the same, or to opposite root compartments. 3The split-root experiment revealed that microorganisms affected T. ventralis numbers only when present in the same root compartment. Therefore, the effects of microorganisms on T. ventralis are due to local interactions and not due to induction of a systemic defence mechanism in the plant host. 4When inoculated together with microorganisms, the nematodes were heavily infected with unknown bacteria and with fungi that resembled the genus Catenaria, suggesting that microorganisms control nematodes through parasitism. However, local defence induction cannot be completely excluded. 5Besides microbial enemies of nematodes, the root zone of A. arenaria also contains plant pathogens. Root biomass was reduced by nematode infection, but also by the combination of nematodes and microorganisms, most likely because the soil pathogens overwhelmed the effects of nematode control on plant production. 6We conclude that there may be a trade-off between beneficial effects of soil microorganisms on the plant host due to nematode control vs. pathogenic effects of soil microorganisms on the plant host. We propose that such trade-offs require more attention when studying below-ground multitrophic interactions. [source] Bioactive natural products from soil microorganismsENVIRONMENTAL MICROBIOLOGY, Issue 4 2000Web alert No abstract is available for this article. [source] Ecotoxicological effects of hexahydro-1,3,5-trinitro-1,3,5-triazine on soil microbial activities,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2001Ping Gong Abstract Although hexahydro-1,3,5-trinitro-1,3,5-triazine (also called RDX or hexogen) is a potentially toxic explosive compound that persists in soil, its ecotoxicological effects on soil organisms have rarely been assessed. In this study, two uncontaminated garden soils were spiked with 10 to 12,500 mg RDX/kg dry soil. Soil microbial activities, i.e., potential nitrification, nitrogen fixation, dehydrogenase, basal respiration, and substrate-induced respiration were chosen as bioindicators and were determined after 1-, 4-, and 12-weeks of exposure. Experimental results indicate that RDX showed significant inhibition (up to 36% of control) on indigenous soil microbial communities over the period of this study. All five bioindicators responded similarly to the RDX challenge. The length of exposure also affected the microbial toxicity of RDX, with 12-week exposure exerting more significant effects than the shorter exposure periods, suggesting that soil microorganisms might become more vulnerable to RDX when exposure is extended. The estimated lowest observable adverse effect concentration of RDX was 1,235 mg/kg. No biodegradation products of RDX were detected at all three sampling times. Compared with 2,4,6-trinitrotoluene (TNT), RDX is less toxic to microbes, probably because of its resistance to biodegradation under aerobic conditions, which precludes metabolic activation of nitro groups. [source] Comparative measures of the toxicity of component chemicals in aircraft deicing fluidENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2000Jeffrey S. Cornell Abstract Acraft deicingoperationsarea necessarypart of safe air travel, but release large quantities of aircraft deicing fluids (ADFs) to the environment. Effective measures to mitigate the environmental impacts of deicing operations are hindered because of the negative effects some ADF chemicals have on treatment systems and because of the poorly characterized toxicity of ADF components. This research investigated the contributions of environmentally significant concentrations of selected ADF components to the toxicity of ADF-containing waste streams, and to the inhibition of biodegradation of propylene glycol (PG), the most important component of ADF. The component chemicals studied were PG, the corrosion inhibitor 4(5)-methylbenzotriazole (MeBT; common name: tolyltriazole), and proprietary mixes of corrosion inhibitors, buffers, and surfactants referred to as the additive package or AdPack. Relative to PG alone, the different additives increased the toxicity of ADF and decreased PG biodegradation rates. In enrichments of soil microorganisms acclimated to ADF, the MeBT component significantly decreased cell growth rates and yields, and inhibited PG biodegradation to a greater extent than the AdPack. Microtox® tests indicated that MeBT is the ADF component most toxic to microorganisms. However, acute aquatic toxicity tests indicated that the AdPack components were more toxic than MeBT to Ceriodaphnia dubia and Pimephales promelas, although both components were more toxic than PG alone. [source] Organic matter quality of a forest soil subjected to repeated drying and different re-wetting intensitiesEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2010A. Schmitt Extended drought periods followed by heavy rainfall may increase in many regions of the Earth, but the consequences for the quality of soil organic matter and soil microbial communities are poorly understood. Here, we investigated the effect of repeated drying and re-wetting on microbial communities and the quality of particulate and dissolved organic matter in a Haplic Podzol from a Norway spruce stand. After air-drying, undisturbed soil columns were re-wetted at different intensities (8, 20 and 50 mm per day) and time intervals, so that all treatments received the same amount of water per cycle (100 mm). After the third cycle, SOM pools of the treatments were compared with those of non-dried control columns. Lignin phenols were not systematically affected in the O horizons by the treatments whereas fewer lignin phenols were found in the A horizon of the 20- and 50-mm treatments. Microbial biomass and the ratio of fungi to bacteria were generally not altered, suggesting that most soil microorganisms were well adapted to drying and re-wetting in this soil. However, gram-positive bacteria and actinomycetes were reduced whereas gram-negative bacteria and protozoa were stimulated by the treatments. The increase in the (cy 17: 0 + cy 19: 0)/(16:1,7c + 18:1,7c) ratio indicates physiological or nutritional stress for the bacterial communities in the O, A and B horizons with increasing re-wetting intensity. Drying and re-wetting reduced the amount of hydrolysable plant and microbial sugars in all soil horizons. However, CO2 and dissolved organic carbon fluxes could not explain these losses. We postulate that drying and re-wetting triggered chemical alterations of hydrolysable sugar molecules in organic and mineral soil horizons. [source] Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzolsFEMS MICROBIOLOGY ECOLOGY, Issue 2 2010Julien Louche Abstract Ectomycorrhizal fungi may improve the phosphate nutrition of their host plants by secreting, into the soil solution, acid phosphatases (AcPases) able to release orthophosphate (Pi) from soil organic phosphorus (Po). Using cation-exchange chromatography, we separated four fractions with AcPase activity secreted by the ectomycorrhizal fungus Hebeloma cylindrosporum grown in a pure culture under P-starved conditions. Each AcPase active fraction displayed strong ability in vitro to hydrolyse a wide range of phosphate monoesters, but none of them efficiently hydrolysed phytate. Their efficiency to release Pi from soil NaHCO3 -extractable Po was studied in a sandy podzol used intact or autoclaved. Soils were collected in a 15-year-old Pinus pinaster stand, receiving regular fertilization or not. Autoclaving increased the NaHCO3 -extractable Po concentrations by 55% in unfertilized and by 32,43% in fertilized soils. The efficiency of each AcPase fraction was affected significantly by the soil fertilization regime and the soil treatment (intact vs. autoclaved). The proportion of labile Po enzyme ranged from 0% to 11% and 14% to 48% after 1 h of incubation in bicarbonate solutions extracted from intact and autoclaved soils, respectively. This work suggests that AcPases secreted from H. cylindrosporum could be efficient in recycling Po pools from soil microorganisms that may be delivered by soil autoclaving. [source] Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridisationFEMS MICROBIOLOGY ECOLOGY, Issue 1 2004Svenja Kobabe Abstract The bacterial community composition of the active layer (0,45 cm) of a permafrost-affected tundra soil was analysed by fluorescence in situ hybridisation (FISH). Arctic tundra soils contain large amounts of organic carbon, accumulated in thick soil layers and are known as a major sink of atmospheric CO2. These soils are totally frozen throughout the year and only a thin active layer is unfrozen and shows biological activity during the short summer. To improve the understanding of how the carbon fluxes in the active layer are controlled, detailed analysis of composition, functionality and interaction of soil microorganisms was done. The FISH analyses of the active layer showed large variations in absolute cell numbers and in the composition of the active microbial community between the different horizons, which is caused by the different environmental conditions (e.g., soil temperature, amount of organic matter, aeration) in this vertically structured ecosystem. Universal protein stain 5-(4,6-dichlorotriazin-2-yl)aminofluorescein (DTAF) showed an exponential decrease of total cell counts from the top to the bottom of the active layer (2.3 × 109,1.2 × 108 cells per gram dry soil). Using FISH, up to 59% of the DTAF-detected cells could be detected in the surface horizon, and up to 84% of these FISH-detected cells could be affiliated to a known phylogenetic group. The amount of FISH-detectable cells decreased with increasing depth and so did the diversity of ascertained phylogenetic groups. [source] Pluronics' influence on pseudomonad biofilm and phenazine productionFEMS MICROBIOLOGY LETTERS, Issue 1 2009Lindsay Housley Abstract Colonization of roots by Pseudomonas chlororaphis O6 (PcO6) involves root surface coverage through surface motility and biofilm formation. Root colonization and the production of antifungal phenazines are important in the ability of the bacterium to protect plants against pathogens. In this in vitro study we report that both biofilm formation and phenazine production are differentially influenced by nutrition and the presence of polyethylene oxide/polypropylene oxide triblock copolymer surfactants (Pluronics). Such surfactants are used for many purposes including agricultural formulations. Four Pluronics differing in molecular weight and in hydrophobic/hydrophilic proportions had distinct effects on biofilm formation and secondary metabolite production, although each increased surface motility, termed swarming, to a similar extent. These findings show that Pluronics had specific metabolic impacts on the bacterium, where both up- and downregulation was achieved depending on the medium and the Pluronic composition. In environmental and agricultural settings, Pluronics may have unanticipated effects on soil microorganisms, while in bioprocessing these effects may be leveraged to regulate metabolite yield. [source] Soil microorganisms in coastal foredunes control the ectoparasitic root-feeding nematode Tylenchorhynchus ventralis by local interactionsFUNCTIONAL ECOLOGY, Issue 3 2009Anna M. Pi, kiewicz Summary 1In natural grassland ecosystems, root-feeding nematodes and insects are the dominant below-ground herbivores. In coastal foredunes, the ectoparasitic nematode Tylenchorhynchus ventralis would be a major root herbivore if not strongly controlled by soil microorganisms. Here, we examined if the suppressive effects of the microbial enemies of T. ventralis act by local interactions such as predation, parasitism or antagonism, or local induction of plant defence, or by non-local interactions, such as systemic effects when microorganisms in one section of the plant roots can affect nematode control in another section of the root system. We show that abundance of T. ventralis in the root zone of the grass Ammophila arenaria is suppressed by local interactions. 2We compared local vs. non-local control of nematodes by a natural community of soil microorganisms in a split-root experiment, where nematodes and microbes were inoculated to the same, or to opposite root compartments. 3The split-root experiment revealed that microorganisms affected T. ventralis numbers only when present in the same root compartment. Therefore, the effects of microorganisms on T. ventralis are due to local interactions and not due to induction of a systemic defence mechanism in the plant host. 4When inoculated together with microorganisms, the nematodes were heavily infected with unknown bacteria and with fungi that resembled the genus Catenaria, suggesting that microorganisms control nematodes through parasitism. However, local defence induction cannot be completely excluded. 5Besides microbial enemies of nematodes, the root zone of A. arenaria also contains plant pathogens. Root biomass was reduced by nematode infection, but also by the combination of nematodes and microorganisms, most likely because the soil pathogens overwhelmed the effects of nematode control on plant production. 6We conclude that there may be a trade-off between beneficial effects of soil microorganisms on the plant host due to nematode control vs. pathogenic effects of soil microorganisms on the plant host. We propose that such trade-offs require more attention when studying below-ground multitrophic interactions. [source] Seasonal changes in herbage production and soil phosphorus contents in Japanese lawngrass (Zoysia japonica Steud.) and tall fescue (Festuca arundinacea Schreb.) pasturesGRASSLAND SCIENCE, Issue 1 2008Makoto Kaneko Abstract Seasonal changes in the above-ground phosphorus (P), soil total P (TP), soil Olsen P (OP) and soil microbial biomass P (MBP) were investigated for 2 years in Japanese lawngrass (Zy) and tall fescue (Tf) pastures on Japanese Andosol, with the goal of clarifying P characteristics in the Zy pasture in comparison with the Tf pasture. The soil P attributes were measured in two soil layers (root mat layer, 0,2.5 cm depth; under layer, 5,10 cm depth). The P concentration of the above-ground herbage in the Zy pasture, which was higher than the standard value and similar to those in the Tf pasture, might have contributed to the large amounts of the above-ground P mass. The lack of plowing management and the coverage with Japanese lawngrass might have changed soil TP. The TP, the OP and the OP/TP in the Zy pasture were higher than those in the Tf pasture, and the TP, the OP and the OP/TP at the root mat layer were higher than those at the under layer. A large amount of the TP and high P availability in the soil caused the large amounts of OP. Soil pH, soil microorganisms and MBP might have affected soil P availability in the Zy pasture. Plant litter in the root mat layer of the Zy pasture may have increased soil P accumulation and its availability, which might be reasons for the high P uptake in the present study. Japanese lawngrass pasture may be a system with improved soil P utilization efficiency based on P cycling. [source] Plant amino acid uptake, soluble N turnover and microbial N capture in soils of a grazed Arctic salt marshJOURNAL OF ECOLOGY, Issue 4 2003Hugh A. L. Henry Summary 1The uptake of free amino acids by the grass Puccinellia phryganodes was investigated in soils of an Arctic coastal salt marsh, where low temperatures and high salinity limit inorganic nitrogen (N) availability, and the availability of soluble organic N relative to inorganic N is often high. 2Following the injection of 13C15N-amino acid, 15N-ammonium and 15N-nitrate tracers into soils, rates of soluble nitrogen turnover and the incorporation of 13C and 15N into plant roots and shoots were assessed. Chloroform fumigation-extraction was used to estimate the partitioning of labelled substrates into microbial biomass. 3Free amino acids turned over rapidly in the soil, with half-lives ranging from 8.2 to 22.8 h for glycine and 8.9 to 25.2 h for leucine, compared with 5.6 to 14.7 h and 5.6 to 15.6 h for ammonium and nitrate, respectively. 15N from both organic and inorganic substrates was incorporated rapidly into plant tissue and the ratio of 13C/15N incorporation into plant tissue indicated that at least 5,11% of 13C15N-glycine was absorbed intact. 4Microbial C and N per unit soil volume were 1.7 and 5.4 times higher, respectively, than corresponding values for plant C and N. Plant incorporation of 15N tracer was 56%, 83% and 68% of the comparable incorporation by soil microorganisms of glycine, ammonium and nitrate ions, respectively. 5These results indicate that P. phryganodes can absorb amino acids intact from the soil despite competition from soil microorganisms, and that free amino acids may contribute substantially to N uptake in this important forage grass utilized by lesser snow geese in the coastal marsh. [source] Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soilsJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 3 2006Rainer Georg Joergensen Abstract The present review is focused on microbiological methods used in agricultural soils accustomed to human disturbance. Recent developments in soil biology are analyzed with the aim of highlighting gaps in knowledge, unsolved research questions, and controversial results. Activity rates (basal respiration, N mineralization) and biomass are used as overall indices for assessing microbial functions in soil and can be supplemented by biomass ratios (C : N, C : P, and C : S) and eco-physiological ratios (soil organic C : microbial-biomass C, qCO2, qNmin). The community structure can be characterized by functional groups of the soil microbial biomass such as fungi and bacteria, Gram-negative and Gram-positive bacteria, or by biotic diversity. Methodological aspects of soil microbial indices are assessed, such as sampling, pretreatment of samples, and conversion factors of data into biomass values. Microbial-biomass C (µg (g soil),1) can be estimated by multiplying total PLFA (nmol (g soil),1) by the FPLFA -factor of 5.8 and DNA (µg (g soil),1) by the FDNA -factor of 6.0. In addition, the turnover of the soil microbial biomass is appreciated as a key process for maintaining nutrient cycles in soil. Examples are briefly presented that show the direction of human impact on soil microorganisms by the methods evaluated. These examples are taken from research on organic farming, reduced tillage, de-intensification of land-use management, degradation of peatland, slurry application, salinization, heavy-metal contamination, lignite deposition, pesticide application, antibiotics, TNT, and genetically modified plants. [source] Organic fertilizers derived from plant materials Part II: Turnover in field trialsJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 2 2006Torsten Müller Abstract Our aim was to investigate two different organic fertilizers derived from plant materials (OFDP) with respect to their nitrogen (N) and carbon (C) turnover in field trials planted with small radish (Raphanus sativus L. var. sativus) and white cabbage (Brassica oleracea L. convar. capitata var. alba) or fallow. The two fertilizers investigated were coarse seed meal of yellow lupin (Lupinus luteus L.) and coarse meal of castor cake (Ricinus communis L.). Under cool spring conditions, the soil turnover of yellow lupin,seed meal was slightly enhanced compared to castor-cake meal. During the vegetation period of the vegetables, N added with both fertilizers was metabolized more or less completely by soil microorganisms. Due to similar efficiencies of the fertilizers tested, no significant difference could be found in the N uptake of plants. From this point of view, yellow lupin,seed meal, which can be produced by farmers themselves, has the potential to replace the widely used castor-cake meal. Considerable amounts of N may remain in the field after fertilization with OFDPs either as mineral N or as easily mineralizable organic N. This N should be utilized immediately by a succeeding crop to avoid leaching losses. [source] Classification of soil microorganisms based on growth properties: a critical view of some commonly used terms.JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 3 2004Klassifikation von Bodenmikroorganismen anhand von Wachstumseigenschaften: eine kritische Betrachtung einiger allgemein verwendeter Begriffe [source] Pharmaceutical antibiotic compounds in soils , a reviewJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 2 2003Sören Thiele-Bruhn Antibiotics are highly effective, bioactive substances. As a result of their consumption, excretion, and persistence, they are disseminated mostly via excrements and enter the soils and other environmental compartments. Resulting residual concentrations in soils range from a few ,g upto g kg,1 and correspond to those found for pesticides. Numerous antibiotic molecules comprise of a non-polar core combined with polar functional moieties. Many antibiotics are amphiphilic or amphoteric and ionize. However, physicochemical properties vary widely among compounds from the various structural classes. Existing analytical methods for environmental samples often combine an extraction with acidic buffered solvents and the use of LC-MS for determination. In soils, adsorption of antibiotics to the organic and mineral exchange sites is mostly due to charge transfer and ion interactions and not to hydrophobic partitioning. Sorption is strongly influenced by the pH of the medium and governs the mobility and transport of the antibiotics. In particular for the strongly adsorbed antibiotics, fast leaching through soils by macropore or preferential transport facilitated by dissolved soil colloids seems to be the major transport process. Antibiotics of numerous classes are photodegraded. However, on soil surfaces this process if of minor influence. Compared to this, biotransformation yields a more effective degradation and inactivation of antibiotics. However, some metabolites still comprise of an antibiotic potency. Degradation of antibiotics is hampered by fixation to the soil matrix; persisting antibiotics were already determined in soils. Effects on soil organisms are very diverse, although all antibiotics are highly bioactive. The absence of effects might in parts be due to a lack of suitable test methods. However, dose and persistence time related effects especially on soil microorganisms are often observed that might cause shifts of the microbial community. Significant effects on soil fauna were only determined for anthelmintics. Due to the antibiotic effect, resistance in soil microorganisms can be provoked by antibiotics. Additionally, the administration of antibiotics mostly causes the formation of resistant microorganisms within the treated body. Hence, resistant microorganisms reach directly the soils with contaminated excrements. When pathogens are resistant or acquire resistance from commensal microorganisms via gene transfer, humans and animals are endangered to suffer from infections that cannot be treated with pharmacotherapy. The uptake into plants even of mobile antibiotics is small. However, effects on plant growth were determined for some species and antibiotics. Pharmazeutische Antibiotika in Böden , ein Überblick Antibiotika sind hochgradig wirksame, bioaktive Substanzen. Infolge ihrer Anwendung, Ausscheidung und Persistenz werden sie meist über die Exkremente in Böden und andere Umweltkompartimente eingetragen. Die resultierenden Rückstandskonzentrationen in Böden im Bereich von wenigen ,g bis zu g kg,1 entsprechen in etwa denen von Pflanzenschutzmitteln. Die Molekülstruktur von Antibiotika besteht häufig aus einem unpolaren Kern und polaren Randgruppen. Viele Antibiotika sind amphiphil oder amphoter und bilden Ionen, jedoch weisen die zahlreichen Antibiotika unterschiedlicher Strukturklassen stark divergierende physikochemische Eigenschaften auf. In den vorliegenden Nachweis"methoden für Umweltproben werden häufig sauer gepufferte Lösungsmittel zur Extraktion und eine Bestimmung mittels LC-MS kombiniert. Die Adsorption der Antibiotika an den organischen als auch an den mineralischen Bodenaustauschern erfolgt zumeist durch Ladungs- und Ionenwechselwirkungen und weniger durch hydrophobe Bindungen. Das Verteilungsverhalten hängt dabei entscheidend vom pH-Wert des Mediums ab und beeinflusst die Mobilität und Verlagerung der Antibiotika. Bei vielen, insbesondere stark adsorbierten Antibiotika sind v.,a. schnelle Fließvorgänge wie durch präferenziellen und Makroporenfluss sowie der Cotransport mit gelösten Bodenkolloiden von besonderer Bedeutung. Antibiotika vieler Strukturklassen können durch Licht abgebaut werden. Dieser Abbaupfad spielt auf Bodenoberflächen jedoch nur eine untergeordnete Rolle. Hingegen kommt es insbesondere durch biologische Transformationsprozesse zu einer intensiven Degradation und Inaktivierung der Antibiotika. Verschiedene Metaboliten weisen jedoch ebenfalls ein antibiotisches Potential auf. Der Abbau der Antibiotika wird durch die Festlegung in Böden gehemmt; dementsprechend wurde eine Persistenz verschiedener Antibiotika nachgewiesen. Trotz der starken bioaktiven Wirkung aller Antibiotika sind die festgestellten Effekte auf Bodenorganismen sehr unterschiedlich. Dies liegt nicht zuletzt an einem Mangel an geeigneten Testmethoden. In der Regel sind jedoch von Dosis und Wirkungsdauer abhängige Effekte insbesondere auf Mikroorganismen festzustellen, die zu Veränderungen der Mikroorganismenpopulation führen können. Lediglich durch Anthelmintika wurden deutliche Wirkungen auf Vertreter der Bodenfauna hervorgerufen. Infolge der antibiotischen Wirkung der Pharmazeutika kann eine Resistenzbildung bei Bodenorganismen ausgelöst werden. Zudem hat die Medikation von Antibiotika die Bildung resistenter Mikroorganismen bereits im behandelten Organismus zur Folge. Durch deren anschließende Ausscheidung gelangen resistente Keime auch direkt in die Böden. Handelt es sich um resistente Pathogene oder kommt es zur Übertragung der Resistenzgene zwischen kommensalen und pathogenen Mikroorganismen, so besteht das erhebliche Risiko einer nicht therapierbaren Infektion von Mensch und Tier. Die Aufnahme selbst mobiler Antibiotika in die Pflanzen ist sehr gering. Dennoch wurden bei einigen Pflanzenarten Wirkungen von Antibiotika auf das Wachstum nachgewiesen. [source] Finnish Allergy Programme 2008,2018 , time to act and change the courseALLERGY, Issue 6 2008T. Haahtela Background:, The prevalence of allergic diseases has grown in Finland, similarly to many other western countries. Although the origin of allergy remains unresolved, increasing body of evidence indicates that the modern man living in urban built environment is deprived from environmental protective factors (e.g. soil microorganisms) that are fundamental for normal tolerance development. The current dogma of allergen avoidance has not proved effective in halting the ,epidemic', and it is the Finnish consensus that restoring and strengthening tolerance should more be in focus. Aim:, The national 10-year programme is aimed to reduce burden of allergies. The main goals are to (i) prevent the development of allergic symptoms; (ii) increase tolerance against allergens; (iii) improve the diagnostics; (iv) decrease work-related allergies; (v) allocate resources to manage and prevent exacerbations of severe allergies and (vi) decrease costs caused by allergic diseases. Methods:, For each goal, specific tasks, tools and evaluation methods are defined. Nationwide implementation acts through the network of local co-ordinators (primary care physicians, nurses, pharmacists). In addition, three nongovernmental organizations (NGOs) take care of the programme implementation. The 21 central hospital districts carry out a three step educational process: (i) healthcare personnel; (ii) representatives and educators of NGOs and (iii) patients and the general population. For outcome evaluation, repeated surveys are performed and healthcare registers employed at the beginning, at 5 years, and at the end of the programme. The process will be evaluated by an independent external body. Conclusion:, The Finnish initiative is a comprehensive plan to reduce burden of allergies. The aim is to increase immunological tolerance and change attitudes to support health instead of medicalizing common and mild allergy symptoms. It is time to act, when allergic individuals are becoming a majority of western populations and their numbers are in rapid increase worldwide. The Programme is associated with the Global Alliance of Chronic Respiratory Diseases (GARD), WHO. [source] The sugar porter gene family of Laccaria bicolor: function in ectomycorrhizal symbiosis and soil-growing hyphaeNEW PHYTOLOGIST, Issue 2 2008Mónica Fajardo López Summary ,,Formation of ectomycorrhizas, a symbiosis with fine roots of woody plants, is one way for soil fungi to overcome carbohydrate limitation in forest ecosystems. ,,Fifteen potential hexose transporter proteins, of which 10 group within three clusters, are encoded in the genome of the ectomycorrhizal model fungus Laccaria bicolor. For 14 of them, transcripts were detectable. ,,When grown in liquid culture, carbon starvation resulted in at least twofold higher transcript abundances for seven genes. Temporarily elevated transcript abundance after sugar addition was observed for three genes. Compared with the extraradical mycelium, ectomycorrhiza formation resulted in a strongly enhanced expression of six genes, of which four revealed their highest observed transcript abundances in symbiosis. A function as hexose importer was proven for three of them. Only three genes, of which just one was expressed at a considerable level, revealed a reduced transcript content in mycorrhizas. ,,From gene expression patterns and import kinetics, the L. bicolor hexose transporters could be divided into two groups: those responsible for uptake of carbohydrates by soil-growing hyphae, for improved carbon nutrition, and to reduce nutrient uptake competition by other soil microorganisms; and those responsible for efficient hexose uptake at the plant,fungus interface. [source] Carbon and nutrient limitation of soil microorganisms and microbial grazers in a tropical montane rain forestOIKOS, Issue 6 2010Valentyna Krashevska We investigated the role of carbon, nitrogen and phosphorus as limiting factors of microorganisms and microbial grazers (testate amoebae) in a montane tropical rain forest in southern Ecuador. Carbon (as glucose), nitrogen (as NH4NO3) and phosphorus (as NaH2PO4) were added separately and in combination bimonthly to experimental plots for 20 months. By adding glucose and nutrients we expected to increase the growth of microorganisms as the major food resource of testate amoebae. The response of microorganisms to experimental treatments was determined by analysing microbial biomass (SIR), fungal biomass and microbial community composition as measured by phospholipid fatty acids (PLFAs). We hypothesized that the response of testate amoebae is closely linked to that of microorganisms. Carbon addition strongly increased ergosterol concentration and, less pronounced, the amount of linoleic acid as fungal biomarker, suggesting that saprotrophic fungi are limited by carbon. Microbial biomass and ergosterol concentrations reached a maximum in the combined treatment with C, N and P indicating that both N and P also were in short supply. In contrast to saprotrophic fungi and microorganisms in total, testate amoebae suffered from the addition of C and reached maximum density by the addition of N. The results indicate that saprotrophic fungi in tropical montane rain forests are mainly limited by carbon whereas gram positive and negative bacteria benefit from increased availability of P. Testate amoebae suffered from increased dominance of saprotrophic fungi in glucose treatments but benefited from increased supply of N. The results show that testate amoebae of tropical montane rain forests are controlled by bottom,up forces relying on specific food resources rather than the amount of bacterial biomass with saprotrophic fungi functioning as major antagonists. Compared to temperate systems microbial food webs in tropical forests therefore may be much more complex than previously assumed with trophic links being rather specific and antagonistic interactions overriding trophic interactions. [source] Nitrogen balance in forest soils: nutritional limitation of plants under climate change stressesPLANT BIOLOGY, Issue 2009H. Rennenberg Abstract Forest ecosystems with low soil nitrogen (N) availability are characterized by direct competition for this growth-limiting resource between several players, i.e. various components of vegetation, such as old-growth trees, natural regeneration and understorey species, mycorrhizal fungi, free-living fungi and bacteria. With the increase in frequency and intensity of extreme climate events predicted in current climate change scenarios, also competition for N between plants and/or soil microorganisms will be affected. In this review, we summarize the present understanding of ecosystem N cycling in N-limited forests and its interaction with extreme climate events, such as heat, drought and flooding. More specifically, the impacts of environmental stresses on microbial release and consumption of bioavailable N, N uptake and competition between plants, as well as plant and microbial uptake are presented. Furthermore, the consequences of drying,wetting cycles on N cycling are discussed. Additionally, we highlight the current methodological difficulties that limit present understanding of N cycling in forest ecosystems and the need for interdisciplinary studies. [source] Toxicity Effect of Pb(II) on Two Different Kinds of Microbes Measured by MicrocalorimetryCHINESE JOURNAL OF CHEMISTRY, Issue 3 2009Nan GAI Abstract In this work, microcalorimetric technique was used to analyze Pb(II) toxic action on the metabolic activities of Candida humicola and Bacillus subtilis. The experimental results revealed that Pb(II) had a stimulating effect on C. humicola and B. subtilis growth at a relatively low concentration (10.0 g·mL,1); while, C. humicola and B. subtilis were inhibited completely when the concentrations were up to 320.0 and 160.0 g·mL,1, respectively, and the relationships between growth rate constant (k) and doses of Pb(II) were approximately linear for the two microbes at certain concerntrations. At the same time, their cell dry weight and turbidity (OD600) during growth were also obtained. Their thermogenic curves of the growth coincided well with their turbidity curves, elucidating that the microcalorimetric method agreed with the routine microbiology methods. All of these corroborate the validity and sensitivity of the microcalorimetric technique to investigate the toxic effect of Pb(II) on soil microorganisms. [source] |