Home About us Contact | |||
Soil Food Webs (soil + food_web)
Selected AbstractsBacterial traits, organism mass, and numerical abundance in the detrital soil food web of Dutch agricultural grasslandsECOLOGY LETTERS, Issue 1 2005Christian Mulder Abstract This paper compares responses to environmental stress of the ecophysiological traits of organisms in the detrital soil food webs of grasslands in the Netherlands, using the relationship between average body mass M and numerical abundance N. The microbial biomass and biodiversity of belowground fauna were measured in 110 grasslands on sand, 85 of them farmed under organic, conventional and intensive management. Bacterial cell volume and abundance and electrophoretic DNA bands as well as bacterial activity in the form of either metabolic quotient (qCO2) or microbial quotient (Cmic/Corg) predicted the response of microorganisms to stress. For soil fauna, the logarithm of body mass log(M) was approximately linearly related to the logarithm of numerical abundance log(N) with slope near ,1, and the regression slope and the proportion of predatory species were lower in intensive agroecosystems (more reduced substrates with higher energy content). Linear regression of log(N) on log(M) had slope not far from ,3/4. The approach to monitoring data illustrated in this paper could be useful in assessing land-use quality. [source] Temporal and spatial variability in soil food web structureOIKOS, Issue 11 2007Matty P. Berg Heterogeneity is a prominent feature of most ecosystems. As a result of environmental heterogeneity the distribution of many soil organisms shows a temporal as well as horizontal and vertical spatial patterning. In spite of this, food webs are usually portrayed as static networks with highly aggregated trophic groups over broader scales of time and space. The variability in food web structure and its consequences have seldom been examined. Using data from a Scots pine forest soil in the Netherlands, we explored (1) the temporal and spatial variability of a detrital food web and its components, (2) the effect of taxonomic resolution on the perception of variability over time and across space, and (3) the importance of organic matter quality as an explanatory factor for variability in food web composition. Compositional variability, expressed using the Bray-Curtis similarity index, was measured over 2.5 years using a stratified litterbag design with three organic horizons per litterbag set. Variability in community composition and organic matter degradation increased over time in the litter horizon only. Seasonal variation in community composition was larger than variation between samples from the same season in different years. Horizontal spatial variability in community composition and organic matter degradation was relatively low, with no increase in variability with increasing distance between samples. Vertically, communities and organic matter degradation was more different between the non-adjacent litter and humus horizons than between adjacent layers. These findings imply that soil food webs, at least in temperate forest plantations, are more variable than is currently appreciated in experiments and model studies, and that organic matter turnover might be an important factor explaining variability in community composition. Species composition was more variable than functional group composition, which implies that aggregated food webs will seem less sensitive to local temporal and spatial changes than they in fact are. [source] Effects of defoliation intensity on soil food-web properties in an experimental grassland communityOIKOS, Issue 2 2001Juha Mikola We established a greenhouse experiment based on replicated mini-ecosystems to evaluate the effects of defoliation intensity on soil food-web properties in grasslands. Plant communities, composed of white clover (Trifolium repens), perennial ryegrass (Lolium perenne) and plantain (Plantago lanceolata) with well-established root and shoot systems, were subjected to five defoliation intensity treatments: no trimming (defoliation intensity 0, or DI 0), and trimming of all plant material to 35 cm (DI 1), 25 cm (DI 2), 15 cm (DI 3) and 10 cm (DI 4) above soil surface every second week for 14 weeks. Intensification of defoliation reduced shoot production and standing shoot and root mass of plant communities but increased their root to shoot ratio. Soil microbial activity and biomass decreased with intensification of defoliation. Concentrations of NO3,N in soil steadily increased with intensifying defoliation, whereas NH4,N concentrations did not vary between treatments. Numbers of microbi-detritivorous enchytraeids, bacterial-feeding rotifers and bacterial-feeding nematodes steadily increased with intensifying defoliation, while the abundance of fungal-feeding nematodes was significantly enhanced only in DI 3 and DI 4 relative to DI 0. The abundance of herbivorous nematodes per unit soil mass was lower in DI 3 and DI 4 than in DI 0, DI 1 and DI 2, but when calculated per unit root mass, their abundance tended to increase with defoliation intensity. The abundance of omnivorous and predatory nematodes appeared to be highest in the most intensely defoliated systems. The ratio of abundance of fungal-feeding nematodes to that of bacterial-feeding nematodes was not significantly affected by defoliation intensity. The results infer that defoliation intensity may significantly alter the structure of soil food webs in grasslands, and that defoliation per se is able to induce patterns observed in grazing studies in the field. The results did not support hypotheses that defoliation per se would cause a shift between the bacterial-based and fungal-based energy channels in the decomposer food web, or that herbivore and detritivore densities in soil would be highest under intermediate defoliation. Furthermore, our data for microbes and microbial feeders implies that the effects of defoliation intensity on soil food-web structure may depend on the duration of defoliation and are therefore likely to be dynamic rather than constant in nature. [source] |