Soil Deposit (soil + deposit)

Distribution by Scientific Domains


Selected Abstracts


Wave propagation velocity under a vertically vibrated surface foundation

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 9 2009
Jaehun Ahn
Abstract The ultimate objective of the research conducted by the authors is to explore the feasibility of determining reliable in situ values of soil modulus as a function of strain. In field experiments, an excitation is applied on the ground surface using large-scale shakers, and the response of the soil deposit is recorded through receivers embedded in the soil. The focus of this paper is on the simulation and observation of signals that would be recorded at the receiver locations under idealized conditions to provide guidelines on the interpretation of the field measurements. Discrete models are used to reproduce one-dimensional and three-dimensional geometries. When the first times of arrival are detected by receivers under the vertical impulse, they coincide with the arrival of the P wave; therefore related to the constrained modulus of the material. If one considers, on the other hand, phase differences between the motions at two receivers, the picture is far more complicated and one would obtain propagation velocities, function of frequency and measuring location, which do not correspond to either the constrained modulus or Young's modulus. It is necessary then to conduct more rigorous and complicated analyses in order to interpret the data. This paper discusses and illustrates these points. Copyright © 2008 John Wiley & Sons, Ltd. [source]


The Reissner,Sagoci problem for a transversely isotropic half-space

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 11 2006
Mohammad Rahimian
Abstract A transversely isotropic linear elastic half-space, z,0, with the isotropy axis parallel to the z -axis is considered. The purpose of the paper is to determine displacements and stresses fields in the interior of the half-space when a rigid circular disk of radius a completely bonded to the surface of the half-space is rotated through a constant angle ,0. The region of the surface lying out with the circle r,a, is free from stresses. This problem is a type of Reissner,Sagoci mixed boundary value problems. Using cylindrical co-ordinate system and applying Hankel integral transform in the radial direction, the problem may be changed to a system of dual integral equations. The solution of the dual integral equations is obtained by an approach analogous to Sneddon's (J. Appl. Phys. 1947; 18:130,132), so that the circumferential displacement and stress fields inside the medium are obtained analytically. The same problem has already been approached by Hanson and Puja (J. Appl. Mech. 1997; 64:692,694) by the use of integrating the point force potential functions. It is analytically proved that the present solution, although of a quite different form, is equivalent to that given by Hanson and Puja. To illustrate the solution, a few plots are provided. The displacements and the stresses in a soil deposit due to a rotationally symmetric force or boundary displacement may be obtained using the results of this paper. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Semi-analytical far field model for three-dimensional finite-element analysis

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 11 2004
James P. Doherty
Abstract A challenging computational problem arises when a discrete structure (e.g. foundation) interacts with an unbounded medium (e.g. deep soil deposit), particularly if general loading conditions and non-linear material behaviour is assumed. In this paper, a novel method for dealing with such a problem is formulated by combining conventional three-dimensional finite-elements with the recently developed scaled boundary finite-element method. The scaled boundary finite-element method is a semi-analytical technique based on finite-elements that obtains a symmetric stiffness matrix with respect to degrees of freedom on a discretized boundary. The method is particularly well suited to modelling unbounded domains as analytical solutions are found in a radial co-ordinate direction, but, unlike the boundary-element method, no complex fundamental solution is required. A technique for coupling the stiffness matrix of bounded three-dimensional finite-element domain with the stiffness matrix of the unbounded scaled boundary finite-element domain, which uses a Fourier series to model the variation of displacement in the circumferential direction of the cylindrical co-ordinate system, is described. The accuracy and computational efficiency of the new formulation is demonstrated through the linear elastic analysis of rigid circular and square footings. Copyright © 2004 John Wiley & Sons, Ltd. [source]


A model for the 3D kinematic interaction analysis of pile groups in layered soils

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 11 2009
Francesca Dezi
Abstract The paper presents a numerical model for the analysis of the soil,structure kinematic interaction of single piles and pile groups embedded in layered soil deposits during seismic actions. A finite element model is considered for the pile group and the soil is assumed to be a Winkler-type medium. The pile,soil,pile interaction and the radiation problem are accounted for by means of elastodynamic Green's functions. Condensation of the problem permits a consistent and straightforward derivation of both the impedance functions and the foundation input motion, which are necessary to perform the inertial soil,structure interaction analyses. The model proposed allows calculating the internal forces induced by soil,pile and pile-to-pile interactions. Comparisons with data available in literature are made to study the convergence and validate the model. An application to a realistic pile foundation is given to demonstrate the potential of the model to catch the dynamic behaviour of the soil,foundation system and the stress resultants in each pile. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Modelling of contaminant transport through landfill liners using EFGM

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2010
R. Praveen Kumar
Abstract Modelling of contaminant transport through landfill liners and natural soil deposits is an important area of research activity in geoenvironmental engineering. Conventional mesh-based numerical methods depend on mesh/grid size and element connectivity and possess some difficulties when dealing with advection-dominant transport problems. In the present investigation, an attempt has been made to provide a simple but sufficiently accurate methodology for numerical simulation of the two-dimensional contaminant transport through the saturated homogeneous porous media and landfill liners using element-free Galerkin method (EFGM). In the EFGM, an approximate solution is constructed entirely in terms of a set of nodes and no characterization of the interrelationship of the nodes is needed. The EFGM employs moving least-square approximants to approximate the function and uses the Lagrange multiplier method for imposing essential boundary conditions. The results of the EFGM are validated using experimental results. Analytical and finite element solutions are also used to compare the results of the EFGM. In order to test the practical applicability and performance of the EFGM, three case studies of contaminant transport through the landfill liners are presented. A good agreement is obtained between the results of the EFGM and the field investigation data. Copyright © 2009 John Wiley & Sons, Ltd. [source]


The influence of the construction process on the deformation behaviour of diaphragm walls in soft clayey ground

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2006
R. Schäfer
Abstract Conventional numerical predictions of deep excavations normally neglect the construction process of the retaining structure and choose the earth pressure at rest as initial condition at the beginning of the simulation. The presented results of simulation and measurements during the construction process of the Taipei National Enterprise Center show, that such an assumption leads to an underestimation of the horizontal wall deflection, the surface ground settlements as well as the loading of the struts in case of normally to slightly over-consolidated clayey soil deposits. The stepwise installation process of the individual diaphragm wall panels results in a substantial modification of the lateral effective stresses in the adjacent ground. Especially the pouring process of the panel and the fresh concrete pressure causes a partial mobilization of the passive earth pressure and a distinct stress level increase in the upper half of the wall. As a consequence of the increased stresses prior to the pit excavation, up to 15% greater ground and wall movements are predicted. Moreover, the increased stress level due to the installation process of the diaphragm wall leads to substantial higher strut loadings during the excavation of the pit. Copyright © 2006 John Wiley & Sons, Ltd. [source]