Home About us Contact | |||
Soil Components (soil + component)
Selected AbstractsAvoidance tests in site-specific risk assessment,influence of soil properties on the avoidance response of collembola and earthworms,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2008Tiago Natal-da-Luz Abstract The ability of organisms to avoid contaminated soils can act as an indicator of toxic potential in a particular soil. Based on the escape response of earthworms and Collembola, avoidance tests with these soil organisms have great potential as early screening tools in site-specific assessment. These tests are becoming more common in soil ecotoxicology, because they are ecologically relevant and have a shorter duration time compared with standardized soil toxicity tests. The avoidance response of soil invertebrates, however, can be influenced by the soil properties (e.g., organic matter content and texture) that affect behavior of the test species in the exposure matrix. Such an influence could mask a possible effect of the contaminant. Therefore, the effects of soil properties on performance of test species in the exposure media should be considered during risk assessment of contaminated soils. Avoidance tests with earthworms (Eisenia andrei) and springtails (Folsomia candida) were performed to identify the influence of both organic matter content and texture on the avoidance response of representative soil organisms. Distinct artificial soils were prepared by modifying quantities of the standard artificial soil components described by the Organization for Economic Co-operation and Development to achieve different organic matter and texture classes. Several combinations of each factor were tested. Results showed that both properties influenced the avoidance response of organisms, which avoided soils with low organic matter content and fine texture. Springtails were less sensitive to changes in these soil constituents compared with earthworms, indicating springtails can be used for site-specific assessments of contaminated soils with a wider range of respective soil properties. [source] Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed waterENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2006Chad A. Kinney Abstract Three sites in the Front Range of Colorado, USA, were monitored from May through September 2003 to assess the presence and distribution of pharmaceuticals in soil irrigated with reclaimed water derived from urban wastewater. Soil cores were collected monthly, and 19 pharmaceuticals, all of which were detected during the present study, were measured in 5-cm increments of the 30-cm cores. Samples of reclaimed water were analyzed three times during the study to assess the input of pharmaceuticals. Samples collected before the onset of irrigation in 2003 contained numerous pharmaceuticals, likely resulting from the previous year's irrigation. Several of the selected pharmaceuticals increased in total soil concentration at one or more of the sites. The four most commonly detected pharmaceuticals were erythromycin, carbamazepine, fluoxetine, and diphenhydramine. Typical concentrations of the individual pharmaceuticals observed were low (0.02,15 ,g/kg dry soil). The existence of subsurface maximum concentrations and detectable concentrations at the lowest sampled soil depth might indicate interactions of soil components with pharmaceuticals during leaching through the vadose zone. Nevertheless, the present study demonstrates that reclaimed-water irrigation results in soil pharmaceutical concentrations that vary through the irrigation season and that some compounds persist for months after irrigation. [source] Sorption and leaching behaviour of polar aromatic acids in agricultural soils by batch and column leaching testsEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2005R. Celis Summary Aromatic acids can reach the soil from direct anthropogenic activities or, indirectly, from the degradation of many aromatic compounds, such as pesticides or polycyclic aromatic hydrocarbons. Because of the anionic character of aromatic acids at the pH of most soil and sediment environments, they are expected to move rapidly through the soil profile and to pose a great risk of ground water contamination. We designed batch and column leaching tests to characterize the behaviour of three aromatic acids differing in their chemical structures, picloram (4-amino-3,5,6-trichloropicolinic acid), phthalic acid (2,2-benzenedicarboxylic acid), and salicylic acid (2-hydroxybenzoic acid), in four European soils with different physicochemical characteristics. Batch experiments revealed that the persistence of the three acids in soil:water suspensions decreased in the order: picloram , phthalic acid > salicylic acid, and their dissipation curves were relatively independent of soil type. Sorption by the soils, their clay-size fractions and model sorbents indicated much greater affinity of soil constituents for salicylic acid than for picloram or phthalic acid, most likely due to the ability of salicylic acid to form bidentate complexes with positively charged soil components. The extent of leaching of the aromatic acids in hand-packed soil columns decreased in the order: picloram (90,96%) > phthalic acid (25,90%) > salicylic acid (0,37%), which was consistent with the sorption and persistence results of the batch tests. The organic C content, the amount of small-size pores, and the initial concentration of aromatic acid in soil appeared to be important factors influencing the leaching patterns of phthalic acid and salicylic acid in the soils studied, but did not greatly influence the leaching pattern of picloram. Sorption and leaching of polar aromatic acids in soil can therefore vary considerably depending on the structural characteristics of the aromatic acid or soil type. [source] Trends and methodological impacts in soil CO2 efflux partitioning: A metaanalytical reviewGLOBAL CHANGE BIOLOGY, Issue 6 2006JENS-ARNE SUBKE Abstract Partitioning soil carbon dioxide (CO2) efflux (RS) into autotrophic (RA; including plant roots and closely associated organisms) and heterotrophic (RH) components has received considerable attention, as differential responses of these components to environmental change have profound implications for the soil and ecosystem C balance. The increasing number of partitioning studies allows a more detailed analysis of experimental constraints than was previously possible. We present results of an exhaustive literature search of partitioning studies and analyse global trends in flux partitioning between biomes and ecosystem types by means of a metaanalysis. Across all data, an overall decline in the RH/RS ratio for increasing annual RS fluxes emerged. For forest ecosystems, boreal coniferous sites showed significantly higher (P<0.05) RH/RS ratios than temperate sites, while both temperate or tropical deciduous forests did not differ in ratios from any of the other forest types. While chronosequence studies report consistent declines in the RH/RS ratio with age, no difference could be detected for different age groups in the global data set. Different methodologies showed generally good agreement if the range of RS under which they had been measured was considered, with the exception of studies estimating RH by means of root mass regressions against RS, which resulted in consistently lower RH/RS estimates out of all methods included. Additionally, the time step over which fluxes were partitioned did not affect RH/RS ratios consistently. To put results into context, we review the most common techniques and point out the likely sources of errors associated with them. In order to improve soil CO2 efflux partitioning in future experiments, we include methodological recommendations, and also highlight the potential interactions between soil components that may be overlooked as a consequence of the partitioning process itself. [source] Effect of soil and physiographic factors on ecological plant groups in the eastern Elborz mountain rangeland of IranGRASSLAND SCIENCE, Issue 2 2010Mohammadreza Tatian Abstract To investigate the cause of differences among ecological plant groups in the east of the Elborz mountain rangeland, the role of edaphical and topographical characteristics was considered. Two ordination techniques, detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA), were used. The values of slope, aspect, altitude and lithology information were provided by Geographic Information System (GIS), and geomorphological land units were determined by intersection of overlaid data layers. Plant sampling was undertaken within nine land units with similar lithology and altitude but which differed in slope and aspect, using 30 randomly selected 1 m2 plots per land unit. Soil samples were taken from two depths (0,20 and 20,50 cm) in each plot. Organic matter, bulk density, texture, calcium carbonate, total nitrogen and available phosphorus and potassium contents were determined. The results indicated that plant species have different responses to edaphical and topographical parameters. The invader species group had a balanced amount of influence from all soil components and topographic factors, whereas the native grasses were located in productive soils, which typically have a low grazing intensity, such as the north facing slopes. Coniferous bushy trees, cushion plants and some shrub plant groups were found on steep slopes with alkaline soils. The broad-leaved bushy trees plant group was abundant in fine texture soils on low and humid slopes. [source] |