Home About us Contact | |||
Soil C Dynamics (soil + c_dynamics)
Selected AbstractsGreenhouse gas emissions from four bioenergy crops in England and Wales: Integrating spatial estimates of yield and soil carbon balance in life cycle analysesGCB BIOENERGY, Issue 4 2009JONATHAN HILLIER Abstract Accurate estimation of the greenhouse gas (GHG) mitigation potential of bioenergy crops requires the integration of a significant component of spatially varying information. In particular, crop yield and soil carbon (C) stocks are variables which are generally soil type and climate dependent. Since gaseous emissions from soil C depend on current C stocks, which in turn are related to previous land management it is important to consider both previous and proposed future land use in any C accounting assessment. We have conducted a spatially explicit study for England and Wales, coupling empirical yield maps with the RothC soil C turnover model to simulate soil C dynamics. We estimate soil C changes under proposed planting of four bioenergy crops, Miscanthus (Miscanthus×giganteus), short rotation coppice (SRC) poplar (Populus trichocarpa Torr. & Gray ×P. trichocarpa, var. Trichobel), winter wheat, and oilseed rape. This is then related to the former land use , arable, pasture, or forest/seminatural, and the outputs are then assessed in the context of a life cycle analysis (LCA) for each crop. By offsetting emissions from management under the previous land use, and considering fossil fuel C displaced, the GHG balance is estimated for each of the 12 land use change transitions associated with replacing arable, grassland, or forest/seminatural land, with each of the four bioenergy crops. Miscanthus and SRC are likely to have a mostly beneficial impact in reducing GHG emissions, while oilseed rape and winter wheat have either a net GHG cost, or only a marginal benefit. Previous land use is important and can make the difference between the bioenergy crop being beneficial or worse than the existing land use in terms of GHG balance. [source] Estimating soil carbon fluxes following land-cover change: a test of some critical assumptions for a region in Costa RicaGLOBAL CHANGE BIOLOGY, Issue 2 2004Jennifer S. Powers Abstract Changes in soil carbon storage that accompany land-cover change may have significant effects on the global carbon cycle. The objective of this work was to examine how assumptions about preconversion soil C storage and the effects of land-cover change influence estimates of regional soil C storage. We applied three models of land-cover change effects to two maps of preconversion soil C in a 140 000 ha area of northeastern Costa Rica. One preconversion soil C map was generated using values assigned to tropical wet forest from the literature, the second used values obtained from extensive field sampling. The first model of land-cover change effects used values that are typically applied in global assessments, the second and third models used field data but differed in how the data were aggregated (one was based on land-cover transitions and one was based on terrain attributes). Changes in regional soil C storage were estimated for each combination of model and preconversion soil C for three time periods defined by geo-referenced land-cover maps. The estimated regional soil C under forest vegetation (to 0.3 m) was higher in the map based on field data (10.03 Tg C) than in the map based on literature data (8.90 Tg C), although the range of values derived from propagating estimation errors was large (7.67,12.40 Tg C). Regional soil C storage declined through time due to forest clearing for pasture and crops. Estimated CO2 fluxes depended more on the model of land-cover change effects than on preconversion soil C. Cumulative soil C losses (1950,1996) under the literature model of land-cover effects exceeded estimates based on field data by factors of 3.8,8.0. In order to better constrain regional and global-scale assessments of carbon fluxes from soils in the tropics, future research should focus on methods for extrapolating regional-scale constraints on soil C dynamics to larger spatial and temporal scales. [source] Soil restorative effects of mulching on aggregation and carbon sequestration in a Miamian soil in central OhioLAND DEGRADATION AND DEVELOPMENT, Issue 5 2003G. S. Saroa Abstract Soils play a key role in the global carbon cycle, and can be a source or a sink of atmospheric carbon (C). Thus, the effect of land use and management on soil C dynamics needs to be quantified. This study was conducted to assess: (1) the role of aggregation in enhancing soil organic carbon (SOC) and total soil nitrogen (TSN) concentrations for different mulch rates, (2) the association of SOC and TSN with different particle size fractions, and (3) the temporal changes in the SOC concentration within aggregate and particle size fractions with duration of mulching. Two experiments were initiated, one each in 1989 and 1996, on a Crosby silt loam (Aeric Ochraqualf or Stagnic Luvisol) in central Ohio. Mulch treatments were 0, 8, and 16,Mg,ha,1,yr,1 without crop cultivation. Soil samples from 0,5,cm and 5,10,cm depths were obtained in November 2000; 4 and 11 years after initiating the experiments. Mulch rate significantly increased SOC and TSN concentrations in the 0,5,cm soil layer only. The variation in the SOC concentration attributed to the mulch rate was 41 per,cent after 4 years of mulching and 52 per,cent after 11 years of mulching. There were also differences in SOC and TSN concentrations among large aggregate size fractions, up to 2,mm size after 4 years and up to 0,5,mm after 11 years of mulching. There were also differences in SOC and TSN concentrations among particle size fractions. Variation in the SOC concentration in relation to particle size was attributed to clay by 45,51 per,cent, silt by 34,36 per,cent, and to sand fraction by 15,19 per,cent. Bulk of the TSN (62,67 per,cent) was associated with clay fraction and the rest was equally distributed between silt and sand fractions. The enrichment of SOC and TSN concentrations in the clay fraction increased with depth. The C:N ratio was not affected by the mulch rate, but differed significantly among particle size fractions; being in the order of sand >silt >clay. Copyright © 2003 John Wiley & Sons, Ltd. [source] Dynamics of heterorhizic root systems: protoxylem groups within the fine-root system of Chamaecyparis obtusaNEW PHYTOLOGIST, Issue 2 2005Takuo Hishi Summary ,,To understand the physiology of fine-root functions in relation to soil organic sources, the heterogeneity of individual root functions within a fine-root system requires investigation. Here the heterogeneous dynamics within fine-root systems are reported. ,,The fine roots of Chamaecyparis obtusa were sampled using a sequential ingrowth core method over 2 yr. After color categorization, roots were classified into protoxylem groups from anatomical observations. ,,The root lengths with diarch and triarch groups fluctuated seasonally, whereas the tetrarch root length increased. The percentage of secondary root mortality to total mortality increased with increasing amounts of protoxylem. The carbon : nitrogen ratio indicated that the decomposability of primary roots might be greater than that of secondary roots. The position of diarch roots was mostly apical, whereas tetrarch roots tended to be distributed in basal positions within the root architecture. ,,We demonstrate the heterogeneous dynamics within a fine-root system of C. obtusa. Fine-root heterogeneity should affect soil C dynamics. This heterogeneity is determined by the branching position within the root architecture. [source] |