Home About us Contact | |||
Sodium Channels (sodium + channel)
Kinds of Sodium Channels Terms modified by Sodium Channels Selected AbstractsINHIBITION OF TOLL-LIKE RECEPTOR-4, NUCLEAR FACTOR-,B AND MITOGEN-ACTIVATED PROTEIN KINASE BY LIGNOCAINE MAY INVOLVE VOLTAGE-SENSITIVE SODIUM CHANNELSCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 9 2008Ping-Ying Lee SUMMARY 1We have shown previously that lignocaine inhibits the upregulation of inducible nitric oxide synthase (iNOS), a crucial factor that initiates the systemic inflammatory response during sepsis, possibly through voltage-sensitive sodium channels (VSSC). Toll-like receptor-4 (TLR-4), nuclear factor (NF)-,B and mitogen activated protein kinases (MAPKs) participate in the upstream regulation of iNOS expression induced by endotoxin. In the present study, we investigated the effects of lignocaine in the regulation of the expression of these enzymes. The role of VSSC in the effects of lignocaine was also investigated. 2Confluent murine macrophages (RAW264.7 cells) were randomized to receive lipopolysaccharide (LPS; 100 ng/mL), LPS + lignocaine (50 µmol/L), LPS + tetrodotoxin (TTX; 1 µmol/L; a VSSC inhibitor), LPS + lignocaine + veratridine (Ver; 50 µmol/L; a VSSC activator) or LPS + TTX + Ver. After reacting with LPS for 0, 15, 30, 45 and 60 min, cell cultures were harvested and enzyme expression was evaluated. 3We found that LPS significantly increased the concentrations of TLR-4, NF-,B and MAPKs, including extracellular regulated kinase (ERK), c-jun N-terminal kinase (JNK) and p38 MAPK, in activated macrophages. Lignocaine and TTX significantly attenuated the effects of LPS on TLR-4, NF-,B, ERK and p38 MAPK expression, but not on JNK. Veratridine mitigated the effects of lignocaine and TTX. 4These data demonstrate that lignocaine has significant inhibitory effects on the activation of TLR-4, NF-,B and MAPKs in activated macrophages. Moreover, these effects involve VSSC. [source] The Anticonvulsant SGB-017 (ADCI) Blocks Voltage-Gated Sodium Channels in Rat and Human Neurons: Comparison with CarbamazepineEPILEPSIA, Issue 3 2000Lucy Sun Summary: Purpose: SGB-017 (ADCI) is a novel anticonvul-sant that blocks both voltage-activated sodium channels and N -methyl- d -aspartate (NMDA)-receptor-gated channels. Results by Rogawski et al. suggested that SGB-017 produces its anticonvulsant action primarily by inhibition of NMDA-receptor channels. However, SGB-017 is effective in several animal models of epilepsy that are unresponsive to NMDA antagonists. These results indicate that block of NMDA-receptor channels is not the only mechanism contributing to its anticonvulsant activity. Thus the effects of SGB-017 on neu-ronal sodium channels were investigated. Methods: Whole cell voltage-clamp techniques were used to record sodium currents in freshly dissociated rat superior cervical ganglion (SCG) and hippocampal neurons and cultured human NT2 neurons. The effects of SGB-017 on the amplitude of sodium currents, elicited by a depolarizing pulse to 0 mV from different holding potentials, were measured and compared with those of carbamazepine (CBZ). Results: SGB-017 inhibited sodium currents in rat SCG and hippocampal neurons with a similar potency to CBZ. Like CBZ, the inhibition of sodium channels by SGB-017 was voltage dependent. Its median inhibitory concentration (IC50) for inhibition of sodium channels at depolarized holding potentials is similar to that for its inhibition of NMDA receptor channels. In human hNT2 neurons, SGB-017 was more potent than CBZ at inhibiting sodium currents. Conclusions: SGB-017 produces its anticonvulsant activity by blocking both sodium- and NMDA-receptor channels in a voltage- and use-dependent manner. The combination of these two mechanisms of action makes SGB-017 an effective AED in several different animal models of epilepsy. [source] A Common SCN5A Variant Alters the Responsiveness of Human Sodium Channels to Class I Antiarrhythmic AgentsJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 4 2007MOSSAAB SHURAIH M.D. Background: The potential pathophysiological role of common SCN5A polymorphisms in cardiac arrhythmias has been increasingly recognized. However, little is known about the impact of those polymorphisms on the pharmocological response of hNav1.5 to various antiarrhythmic agents. Methods and Results: The known SCN5A polymorphism, S524Y, was studied in comparison with the wild type (WT) define the SCN5A-Q1077del variant. The ion channel gating kinetics and pharmacology were evaluated using whole-cell patch-clamp methods in HEK-293 cells. Consistent with a previous report, the basal ion channel gating kinetics of S524Y were indistinguishable from the WT. Quinidine (20 ,M) caused similar extent of tonic block reduction of sodium currents at ,120 mV in WT and S524Y. Surprisingly, quinidine (20 ,M) exerted a more use-dependent block by a 10 Hz pulse train in S524Y than in WT at 22°C (Ki: WT, 51.3 ,M; S524Y, 20.3 ,M). S524Y significantly delayed recovery from the use-dependent block, compared with the WT (,= 88.6 ± 7.9 s vs 41.9 ± 6.6 s, P < 0.005). Under more physiological conditions using a 2 Hz pulse train at 37°C, S524Y similarly enhanced the use-dependent block by quinidine. In addition, S524Y enhanced the use-dependent block by flecainide (12.5 ,M), but not by mexiletine (100 ,M). Conclusion: A common SCN5A polymorphism, S524Y, can enhance a use-dependent block by class Ia and Ic antiarrhythmic agents. Our findings may have clinical implications in pharmacological management of cardiac arrhythmias since this common SCN5A polymorphism might be a contributing factor to the variable antiarrhythmic response. [source] Voltage-Gated Sodium Channels: Therapeutic Targets for PainPAIN MEDICINE, Issue 7 2009Sulayman D. Dib-Hajj PhD ABSTRACT Objective., To provide an overview of the role of voltage-gated sodium channels in pathophysiology of acquired and inherited pain states, and of recent developments that validate these channels as therapeutic targets for treating chronic pain. Background., Neuropathic and inflammatory pain conditions are major medical needs worldwide with only partial or low efficacy treatment options currently available. An important role of voltage-gated sodium channels in many different pain states has been established in animal models and, empirically, in humans, where sodium channel blockers partially ameliorate pain. Animal studies have causally linked changes in sodium channel expression and modulation that alter channel gating properties or current density in nociceptor neurons to different pain states. Biophysical and pharmacological studies have identified the sodium channel isoforms Nav1.3, Nav1.7, Nav1.8, and Nav1.9 as particularly important in the pathophysiology of different pain syndromes. Recently, gain-of-function mutations in SCN9A, the gene which encodes Nav1.7, have been linked to two human-inherited pain syndromes, inherited erythromelalgia and paroxysmal extreme pain disorder, while loss-of-function mutations in SCN9A have been linked to complete insensitivity to pain. Studies on firing properties of sensory neurons of dorsal root ganglia demonstrate that the effects of gain-of-function mutations in Nav1.7 on the excitability of these neurons depend on the presence of Nav1.8, which suggests a similar physiological interaction of these two channels in humans carrying the Nav1.7 pain mutation. Conclusions., These studies suggest that isoform-specific blockers of these channels or targeting of their modulators may provide novel approaches to treatment of pain. [source] Sodium Channels and Multiple Sclerosis: Roles in Symptom Production, Damamge and Therapy.BRAIN PATHOLOGY, Issue 3 2007Brain Pathology 200, Smith. No abstract is available for this article. [source] ChemInform Abstract: Pilsicainide and Its Oxymethylene Analogue: Facile Alternative Syntheses and in vitro Testing on Human Skeletal Muscle Sodium Channels.CHEMINFORM, Issue 1 2008Claudio Bruno Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] Solution Structure of , -Am2766: A Highly Hydrophobic , -Conotoxin from Conus amadis That Inhibits Inactivation of Neuronal Voltage-Gated Sodium ChannelsCHEMISTRY & BIODIVERSITY, Issue 4 2005Siddhartha The three-dimensional (3D) NMR solution structure (MeOH) of the highly hydrophobic , -conotoxin , -Am2766 from the molluscivorous snail Conus amadis has been determined. Fifteen converged structures were obtained on the basis of 262 distance constraints, 25 torsion-angle constraints, and ten constraints based on disulfide linkages and H-bonds. The root-mean-square deviations (rmsd) about the averaged coordinates of the backbone (N, C,, C) and (all) heavy atoms were 0.62±0.20 and 1.12±0.23,Ĺ, respectively. The structures determined are of good stereochemical quality, as evidenced by the high percentage (100%) of backbone dihedral angles that occupy favorable and additionally allowed regions of the Ramachandran map. The structure of , -Am2766 consists of a triple-stranded antiparallel , -sheet, and of four turns. The three disulfides form the classical ,inhibitory cysteine knot' motif. So far, only one tertiary structure of a , -conotoxin has been reported; thus, the tertiary structure of , -Am2766 is the second such example. Another Conus peptide, Am2735 from C. amadis, has also been purified and sequenced. Am2735 shares 96% sequence identity with , -Am2766. Unlike , -Am2766, Am2735 does not inhibit the fast inactivation of Na+ currents in rat brain Nav1.2 Na+ channels at concentrations up to 200,nM. [source] Anatomical characterisation of voltage gated sodium channels in the mammalian cochlear nerve spiral gangliaCLINICAL OTOLARYNGOLOGY, Issue 6 2006A. Prasai Introduction., There is evidence that Voltage Gated Sodium Channels (VGSC) may represent novel therapeutic targets for treatment of certain types of tinnitus and hearing loss. It is also known that the different VGSC types vary in their affinity for differing VGSC blockers. Parallels have been drawn with certain types of tinnitus, chronic pain and epilepsy (1) These conditions are thought to arise from pathological VGSC activity (2) There has also been empirical interest in the use of VGSC blockers as tinnitolytics, with the best known of these being intravenous lignocaine. Aim., The aim of this study was first begin to characterise VGSCs in the mammalian cochlear nerve spiral ganglion. Method., After sacrifice, guinea pigs were perfused with heparin and then 2% paraformaldehyde. The bony matrix of the cochleae was decalcified in buffer containing EGTA (8%). Decalcified tissues were embedded; frozen and 20-micron cryosections were made through the cochleae. Immunocytochemistry was then carried out using antibodies that selectively bind to individual sodium channel ,-subunits. Sections were then analysed and photographed using either an epifluorescence or a confocal microscope. Results and Conclusions., Sodium channel type 1.6 and 1.7 were shown to be expressed in the cochlear nerve spiral ganglion. Further work is being carried out to see if there are changes in the expression of these VGSC after ototrauma. These findings may help us to target our therapy to treat certain types of tinnitus and hearing loss. References 1 Smith P.F., Darlington C.L. (2005) Drug treatments for subjective tinnitus: serendipitous discovery versus rational drug design. Curr. Opin. Investig. Drugs.6, 712,716 2 Taylor C.P., Meldrum B.S. (1995) Na+ channels as targets for neuroprotective drugs. Trends. Pharmacol. Sci. 16, 309,315 [source] Subtype-selective targeting of voltage-gated sodium channelsBRITISH JOURNAL OF PHARMACOLOGY, Issue 6 2009Steve England Voltage-gated sodium channels are key to the initiation and propagation of action potentials in electrically excitable cells. Molecular characterization has shown there to be nine functional members of the family, with a high degree of sequence homology between the channels. This homology translates into similar biophysical and pharmacological properties. Confidence in some of the channels as drug targets has been boosted by the discovery of human mutations in the genes encoding a number of them, which give rise to clinical conditions commensurate with the changes predicted from the altered channel biophysics. As a result, they have received much attention for their therapeutic potential. Sodium channels represent well-precedented drug targets as antidysrhythmics, anticonvulsants and local anaesthetics provide good clinical efficacy, driven through pharmacology at these channels. However, electrophysiological characterization of clinically useful compounds in recombinant expression systems shows them to be weak, with poor selectivity between channel types. This has led to the search for subtype-selective modulators, which offer the promise of treatments with improved clinical efficacy and better toleration. Despite developments in high-throughput electrophysiology platforms, this has proven very challenging. Structural biology is beginning to offer us a greater understanding of the three-dimensional structure of voltage-gated ion channels, bringing with it the opportunity to do real structure-based drug design in the future. This discipline is still in its infancy, but developments with the expression and purification of prokaryotic sodium channels offer the promise of structure-based drug design in the not too distant future. [source] A mutation of ion-conducting pore without effect on ion selectivity of the sodium channelACTA PHYSIOLOGICA, Issue 4 2005Matti Vornanen No abstract is available for this article. [source] Individual variation and hormonal modulation of a sodium channel , subunit in the electric organ correlate with variation in a social signalDEVELOPMENTAL NEUROBIOLOGY, Issue 10 2007He Liu Abstract The sodium channel ,1 subunit affects sodium channel gating and surface density, but little is known about the factors that regulate ,1 expression or its participation in the fine control of cellular excitability. In this study we examined whether graded expression of the ,1 subunit contributes to the gradient in sodium current inactivation, which is tightly controlled and directly related to a social behavior, the electric organ discharge (EOD), in a weakly electric fish Sternopygus macrurus. We found the mRNA and protein levels of ,1 in the electric organ both correlate with EOD frequency. We identified a novel mRNA splice form of this gene and found the splicing preference for this novel splice form also correlates with EOD frequency. Androgen implants lowered EOD frequency and decreased the ,1 mRNA level but did not affect splicing. Coexpression of each splice form in Xenopus oocytes with either the human muscle sodium channel gene, hNav1.4, or a Sternopygus ortholog, smNav1.4b, sped the rate of inactivation of the sodium current and shifted the steady-state inactivation toward less negative membrane potentials. The translational product of the novel mRNA splice form lacks a previously identified important tyrosine residue but still functions normally. The properties of the fish , and coexpressed ,1 subunits in the oocyte replicate those of the electric organ's endogenous sodium current. These data highlight the role of ion channel , subunits in regulating cellular excitability. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source] Monogenic migraine syndromes highlight novel drug targetsDRUG DEVELOPMENT RESEARCH, Issue 7 2007J. Jay Gargus Abstract In the post-genomic era, the paradigm for drug discovery has changed, as every gene may become a potential target. Genetic diseases provide a special window into gene target selection. This approach is being applied to migraine making use of the genes and mutations causing familial hemiplegic migraine (FHM). FHM is caused by missense mutations in CACNA1A, altering a neuronal P/Q Ca2+ channel, in ATP1A2, altering ,2 Na,K-ATPase, and in SCN1A, altering a neuronal sodium channel. These genes provide insights into migraine pathogenesis that likely extend to other forms of migraine as well. Since the three FHM genes are only co-expressed in neurons, FHM is a neuronal, not a vascular, disease and because they all encode ion transport proteins, FHM is a neuronal channelopathy,meaning meta-stable neuronal hyperexcitability is the substrate of migraine, much as it is for genetic epilepsy syndromes. This similarity is reinforced, since different mutations of all three FHM genes can produce seizure syndromes. This has implications for drug discovery in that seizure medications already known to modulate the FHM channel mechanisms warrant more targeted development, and that drugs targeted to vascular headaches, such as the historically effective triptans, or experimental botulinum toxin, may well work by similar nonvascular mechanisms. Finally, in model neurogenetic systems such as Caenorhabditis elegans, the FHM genes also provide both a comprehensive means to discover all genes involved in their signaling pathway,genes potentially involved in common forms of the disease, and an in vivo whole animal means to screen rapidly for novel therapeutics. Drug Dev Res 68:432,440, 2007. © 2008 Wiley-Liss, Inc. [source] First report of saxitoxin in Finnish lakes and possible associated effects on human healthENVIRONMENTAL TOXICOLOGY, Issue 3 2005Jarkko Rapala Abstract This study is the first report of saxitoxin in cyanobacterial blooms in Finland. Bloom samples (n = 50) were collected from Finnish freshwater sites during summer months of 2002 and 2003. These samples were screened for the presence of paralytic shellfish toxins (PSTs) using the Jellett rapid PSP screening test. Samples testing positive for PSTs (n = 7) were further analyzed with saxiphilin- and voltage-gated sodium channel [3H]-STX,binding radioreceptor assays and liquid chromatography using fluorescence and mass spectrometric analysis. The results indicated that saxitoxin (STX) was the only PST analogue in the samples and that it was present in high concentrations, as much as 1 mg L,1. Microscopic analysis revealed that 95%,100% of the phytoplankton in the positive samples consisted of Anabaena lemmermannii. The trophic status of lakes in which STX-containing blooms were found varied from oligotrophic to hypertrophic. All the lakes had high nitrogen-to-phosphorus ratios. In some instances, samples had been collected from sites where swimmers had reported adverse health effects, and in three such cases, reported adverse health effects were associated with sites from which samples testing positive for STX had been received. Symptoms of fever, eye irritation, abdominal pains, and skin rash were reported in children aged 2,10 years after exposure to the water. These were not the adverse human symptoms typical of STX poisoning; rather, they represented acute effects often reported following recreational exposure to cyanobacterial blooms. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 331,340, 2005 [source] Cloning, distribution and functional analysis of the type III sodium channel from human brainEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2000Yu Hua Chen Abstract The type III voltage-gated sodium channel was cloned from human brain. The full-length cDNA has 89% identity with rat type III, and the predicted protein (1951 amino acids) has 55 differences. The expression pattern of human type III mRNA was determined in adult brain tissue and, in contrast to rat, was detected in many regions, including caudate nucleus, cerebellum, hippocampus and frontal lobe. The human type III channel was stably expressed in Chinese hamster ovary (CHO) cells and its biophysical properties compared to the human type II channel using identical conditions. The voltage dependence and kinetics of activation were found to be similar to that of type II. The kinetics of inactivation of the two human subtypes were also similar. However, type III channels inactivated at more hyperpolarized potentials and were slower to recover from inactivation than type II. When expressed in human embryonic kidney (HEK293T) cells, type III channels produced currents with a prominent persistent component, which were similar to those reported for rat type II [Ma et al. (1997) Neuron, 19, 443,452]. However, unlike type II, this was prominent even in the absence of coexpressed G-proteins, suggesting type III may adopt this gating mode more readily. The distinct properties of the channel, together with its wide distribution in adult brain, suggest that in humans, type III may have important physiological roles under normal, and perhaps also pathological conditions. [source] Prolonged action potentials in cardiac Purkinje cells: a distinct phenotype arising from a distinct sodium channelEXPERIMENTAL PHYSIOLOGY, Issue 1 2007Ian M. Fearon No abstract is available for this article. [source] Voltage-gated sodium channel isoform-specific effects of pompilidotoxinsFEBS JOURNAL, Issue 4 2010Emanuele Schiavon Pompilidotoxins (PMTXs, , and ,) are small peptides consisting of 13 amino acids purified from the venom of the solitary wasps Anoplius samariensis (,-PMTX) and Batozonellus maculifrons (,-PMTX). They are known to facilitate synaptic transmission in the lobster neuromuscular junction, and to slow sodium channel inactivation. By using ,-PMTX, ,-PMTX and four synthetic analogs with amino acid changes, we conducted a thorough study of the effects of PMTXs on sodium current inactivation in seven mammalian voltage-gated sodium channel (VGSC) isoforms and one insect VGSC (DmNav1). By evaluating three components of which the inactivating current is composed (fast, slow and steady-state components), we could distinguish three distinct groups of PMTX effects. The first group concerned the insect and Nav1.6 channels, which showed a large increase in the steady-state current component without any increase in the slow component. Moreover, the dose-dependent increase in this steady-state component was correlated with the dose-dependent decrease in the fast component. A second group of effects concerned the Nav1.1, Nav1.2, Nav1.3 and Nav1.7 isoforms, which responded with a large increase in the slow component, and showed only a small steady-state component. As with the first group of effects, the slow component was dose-dependent and correlated with the decrease in the fast component. Finally, a third group of effects concerned Nav1.4 and Nav1.5, which did not show any change in the slow or steady-state component. These data shed light on the complex and intriguing behavior of VGSCs in response to PMTXs, helping us to better understand the molecular determinants explaining isoform-specific effects. [source] A novel N-terminal hydrophobic motif mediates constitutive degradation of serum- and glucocorticoid-induced kinase-1 by the ubiquitin,proteasome pathwayFEBS JOURNAL, Issue 13 2006Agata M. Bogusz Serum- and glucocorticoid-induced protein kinase-1 (SGK-1) plays a critical role in regulation of the epithelial sodium channel, ENaC. SGK-1 also shares significant catalytic domain homology with protein kinase B (PKB/AKT-1) and is a downstream effector of antiapoptotic phosphoinositide 3-kinase signaling. Steady-state levels of an active SGK-1 are tightly regulated by rapid transcriptional activation and post-translational modification including phosphorylation. We show here that endogenous SGK-1 protein is polyubiquitinated and rapidly degraded by the 26S proteasome. In contrast to other rapidly degraded kinases, neither the catalytic activity of SGK-1 nor activation site phosphorylation was required for its ubiquitin modification and degradation. Instead, SGK-1 degradation required a lysine-less six-amino-acid (amino acids 19,24) hydrophobic motif (GMVAIL) within the N-terminal domain. Deletion of amino acids 19,24 significantly increased the half-life of SGK1 and prevented its ubiquitin modification. Interestingly, this minimal region was also required for the association of SGK-1 with the endoplasmic reticulum. Ubiquitin modification and degradation of SGK-1 were increasingly inhibited by the progressive mutation of six N-terminal lysine residues surrounding the GMVAIL motif. Mutation of all six lysines to arginine did not disrupt the subcellular localization of SGK-1 despite a significant decrease in ubiquitination, implying that this modification per se was not required for targeting to the endoplasmic reticulum. These results suggest that constitutive ubiquitin-mediated degradation of SGK-1 is an important mechanism regulating its biological activity. [source] Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations,HUMAN MUTATION, Issue 9 2010James J. Cox Abstract SCN9Aencodes the voltage-gated sodium channel Nav1.7, a protein highly expressed in pain-sensing neurons. Mutations in SCN9A cause three human pain disorders: bi-allelic loss of function mutations result in Channelopathy-associated Insensitivity to Pain (CIP), whereas activating mutations cause severe episodic pain in Paroxysmal Extreme Pain Disorder (PEPD) and Primary Erythermalgia (PE). To date, all mutations in SCN9A that cause a complete inability to experience pain are protein truncating and presumably lead to no protein being produced. Here, we describe the identification and functional characterization of two novel non-truncating mutations in families with CIP: a homozygously-inherited missense mutation found in a consanguineous Israeli Bedouin family (Nav1.7-R896Q) and a five amino acid in-frame deletion found in a sporadic compound heterozygote (Nav1.7-,R1370-L1374). Both of these mutations map to the pore region of the Nav1.7 sodium channel. Using transient transfection of PC12 cells we found a significant reduction in membrane localization of the mutant protein compared to the wild type. Furthermore, voltage clamp experiments of mutant-transfected HEK293 cells show a complete loss of function of the sodium channel, consistent with the absence of pain phenotype. In summary, this study has identified critical amino acids needed for the normal subcellular localization and function of Nav1.7. © 2010 Wiley-Liss, Inc. [source] Deletions of SCN1A 5, genomic region with promoter activity in Dravet syndrome,HUMAN MUTATION, Issue 7 2010Tojo Nakayama Abstract Mutations involving the voltage-gated sodium channel ,I gene SCN1A are major genetic causes of childhood epileptic disorders, as typified by Dravet syndrome. Here we investigated the upstream regions of the SCN1A 5, noncoding exons and found two major regions with promoter activity. These two major promoters were simultaneously active in various brain regions and in most neurons. Using multiplex ligation-dependent probe amplification (MLPA) assays with probes for the 5, noncoding exons, their upstream regions, and all coding exons of SCN1A, we investigated 130 epileptic patients who did not show any SCN1A mutations by sequence analysis of all coding exons and exon,intron boundaries. Among 71 Dravet syndrome patients, we found two patients with heterozygous microdeletions removing the 5, noncoding exons and regions with promoter activity but not affecting the coding exons. We also identified four patients with deletions/duplication in the coding region. One patient with symptomatic focal epilepsy also showed a deletion in the coding region. This study provides the first case of microdeletion limited to the SCN1A 5, promoter region with the coding sequence preserved, and indicates the critical involvement of this upstream region in the molecular pathology of Dravet syndrome. Hum Mutat 31:,11, 2010. © 2010 Wiley-Liss, Inc. [source] Evaluation of the role of CYP6B cytochrome P450s in pyrethroid resistant Australian Helicoverpa armigeraINSECT MOLECULAR BIOLOGY, Issue 1 2007Vladimir D. Grubor Abstract The AN02 strain of Helicoverpa armigera from eastern Australia exhibits 50-fold, PBO-suppressible resistance to the pyrethroid insecticide fenvalerate. The semidominant resistance gene RFen1 was previously mapped to AFLP Linkage Group 13. In evaluating the cytochrome P450 genes CYP6B7, CYP6B6, and CYP6B2 as candidates for RFen1, we found that they occur in a tandem array in the genome, next to the gene encoding the para -type sodium channel; the target of pyrethroid insecticides. We mapped these genes to AFLP Linkage Group 14, thus rejecting mutations within the P450 cluster or para as candidates for RFen1. RFen1 genotypes produced slightly different mRNA levels of the three P450s, but the differences were too small to convincingly account for resistance. We conclude that even if one or more of these P450s metabolize fenvalerate, they are unlikely to be responsible for the resistance in AN02. [source] Extracellular Acidosis Modulates Drug Block of Kv4.3 Currents by Flecainide and QuinidineJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 6 2003Suresh Singarayar M.D. Introduction: As a molecular model of the effect of ischemia on drug block of the transient outward potassium current, the effect of acidosis on the blocking properties of flecainide and quinidine on Kv4.3 currents was studied. Methods and Results: Kv4.3 channels were stably expressed in Chinese hamster ovary cells. Whole-cell, voltage clamp techniques were used to measure the effect of flecainide and quinidine on Kv4.3 currents in solutions of pH 7.4 and 6.0. Extracellular acidosis attenuated flecainide block of Kv4.3 currents, with the IC50 for flecainide (based on current-time integrals) increasing from7.8 ± 1.1 ,Mat pH 7.4 to125.1 ± 1.1 ,Mat pH 6.0. Similar effects were observed for quinidine (IC50 5.2 ± 1.1 ,Mat pH 7.4 and22.1 ± 1.3 ,Mat pH 6.0). Following block by either drug, Kv4.3 channels showed a hyperpolarizing shift in the voltage sensitivity of inactivation and a slowing in the time to recover from inactivation/block that was unaffected by acidosis. In contrast, acidosis attenuated the effects on the time course of inactivation and the degree of tonic- and frequency-dependent block for both drugs. Conclusion: Extracellular acidosis significantly decreases the potency of blockade of Kv4.3 by both flecainide and quinidine. This change in potency may be due to allosteric changes in the channel, changes in the proportion of uncharged drug, and/or changes in the kinetics of drug binding or unbinding. These findings are in contrast to the effects of extracellular acidosis on block of the fast sodium channel by these agents and provide a molecular mechanism for divergent modulation of drug block potentially leading to ischemia-associated proarrhythmia.(J Cardiovasc Electrophysiol, Vol. 14, pp. 641-650, June 2003) [source] Subunits of the epithelial sodium channel family are differentially expressed in the retina of mice with ocular hypertensionJOURNAL OF NEUROCHEMISTRY, Issue 1 2005Frank M. Dyka Abstract Glaucoma is a prevalent cause of blindness, resulting in the apoptotic death of retinal ganglion cells and optic nerve degeneration. The disease is often associated with elevated intraocular pressure, however, molecular mechanisms involved in ganglion cell death are poorly understood. To identify proteins contributing to this pathological process, we analysed the retinal gene expression of DBA/2J mice that develop an elevated intraocular pressure by the age of 6 months with subsequent ganglion cell loss. In this study, we identified subunits of the epithelial sodium channel (ENaC) family that are specifically expressed under elevated intraocular pressure. Using reverse transcriptase polymerase chain reaction we observed a significant increase of ,-ENaC in the neuronal retina of DBA/2J mice when compared with control animals, while ,-ENaC and ,-ENaC were not detectable in this tissue. Specific immune sera to ENaC subunits showed up-regulation of ,-ENaC in synaptic and nuclear layers of the retina, and in the retinal pigment epithelium. Consistent with our polymerase chain reaction data, ,-ENaC was not detected by specific antibodies in the retina, while ,-ENaC was only present in the retinal pigment epithelium under ocular hypertension. Finally, the increase of ,-ENaC gene expression in the neuronal retina and the retinal pigment epithelium was not observed in other tissues of DBA/2J mice. Since the intraocular pressure is regulated by the transport of aqueous humour across epithelial structures of the eye that in turn is associated with ion flux, the specific up-regulation of ENaC proteins could serve as a protecting mechanism against elevated intraocular pressure. [source] Topology and patch-clamp analysis of the sodium channel in relationship to the anti-lipid a antibody in campylobacteriosisJOURNAL OF NEUROSCIENCE RESEARCH, Issue 15 2008Seigo Usuki Abstract An infecting strain VLA2/18 of Campylobacter jejuni was obtained from an individual with campylobacteriosis and used to prepare chicken sera by experimental infection to investigate the role of serum anti-ganglioside antibodies in Guillain-Barré syndrome. Both sera of the patient and chicken contained anti-ganglioside antibodies and anti-Lipid A (anti-Kdo2-Lipid A) antibodies directed against the lipid A portion of the bacterial lipooligosaccharide. The anti-Kdo2-Lipid A activities inhibited voltage-gated Na (Nav) channel of NSC-34 cells in culture. We hypothesized that anti-Kdo2-Lipid A antibody acts on the functional inhibition of Nav1.4. To test this possibility, a rabbit peptide antibody (anti-Nav1.4 pAb) against a 19-mer peptide (KELKDNHILNHVGLTDGPR) on the , subunit of Nav1.4 was produced. Anti-Nav1.4 pAb was cross-reactive to Kdo2-Lipid A. Anti-Kdo2-lipid A antibody activity in the chicken serum was tested for the Na+ current inhibition in NSC-34 cells in combination with ,-Conotoxin and tetrodotoxin. Contrary to our expectations, the anti-Kdo2-Lipid A antibody activity was extended to Nav channels other than Nav1.4. By overlapping structural analysis, it was found that there might be multiple peptide epitopes containing certain dipeptides showing a structural similarity with v-Lipid A. Thus, our study suggests the possibility that there are multiple epitopic peptides on the extracellular domains of Nav1.1 to 1.9, and some of them may represent target sites for anti-Kdo2-Lipid A antibody, to induce neurophysiological changes in GBS by disrupting the normal function of the Nav channels. © 2008 Wiley-Liss, Inc. [source] Effects of age and gene dose on skeletal muscle sodium channel gating in mice deficient in myotonic dystrophy protein kinaseMUSCLE AND NERVE, Issue 6 2002Sita Reddy PhD Abstract Myotonic muscular dystrophy (DM) is characterized by abnormal skeletal muscle Na channel gating and reduced levels of myotonic dystrophy protein kinase (DMPK). Electrophysiological measurements show that mice deficient in Dmpk have reduced Na currents in muscle. We now find that the Na channel expression level is normal in mouse muscle partially or completely deficient in Dmpk. Reduced current amplitudes are not changed by age or gene dose, and the reduction is not due to changes in macroscopic or microscopic gating kinetics. The mechanism of abnormal membrane excitability in DM may in part be silencing of muscle Na channels due to Dmpk deficiency. © 2002 Wiley Periodicals, Inc. Muscle Nerve 25: 000,000, 2002 [source] Molecular analysis of pyrethroid resistance conferred by target insensitivity and increased metabolic detoxification in Plutella xylostellaPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 5 2010Shoji Sonoda Abstract BACKGROUND: The pyrethroid resistance of the diamondback moth Plutella xylostella (L.) is conferred by increased gene expression of cytochrome P450 to detoxify the insecticide and/or through gene mutation of the sodium channel, which makes the individual insensitive to pyrethroids. However, no information is available about the correlation between the increased metabolic detoxification and the target insensitivity in pyrethroid resistance. RESULTS: Frequencies of pyrethroid-resistant alleles (L1014F, T929I and M918I) and two resistance-related mutations (A1101T and P1879S) at the sodium channel and expression levels of the cytochrome P450 gene CYP6BG1 were examined individually using laboratory and field strains of P. xylostella. Real-time quantitative PCR analysis using the laboratory strains revealed that levels of larval expression of the resistant strain, homozygous for the pyrethroid-resistant alleles other than the M918I, are significantly higher than those of the susceptible strain. In the field strains, the expression levels in insects having the same resistant alleles as those of the resistant strains varied greatly among individuals. The expression levels were not significantly higher than those in the heterozygotes. CONCLUSION: Significant correlation between the target insensitivity and the increased metabolic detoxification in pyrethroid resistance of P. xylostella was observed in the laboratory but not in the field. Copyright © 2010 Society of Chemical Industry [source] Lack of cross-resistance to indoxacarb in insecticide-resistant Spodoptera frugiperda (Lepidoptera: Noctuidae) and Plutella xylostella (Lepidoptera: Yponomeutidae)PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 1 2007Simon J Yu Abstract Two field strains of the fall armyworm, Spodoptera frugiperda (JE Smith), collected from corn in north Florida showed high resistance to carbaryl (626- and 1159-fold) and moderate resistance to parathion-methyl (30- and 39-fold) as compared with a laboratory susceptible strain. A field strain of the diamondback moth, Plutella xylostella (L.) collected from cabbage in north Florida and selected for 20 generations with permethrin showed high resistance to permethrin (987-fold) as compared with a susceptible strain. However, in all instances, no cross-resistance to indoxacarb, a novel oxidiazine insecticide, was observed in these two species. Biochemical studies revealed that, in S. frugiperda, activities of detoxification enzymes (microsomal oxidase, glutathione S -transferase and general esterase) were significantly higher in the field strains than in the susceptible strain, indicating that these detoxification enzymes were not actively involved in the resistance to indoxacarb. The lack of cross-resistance between indoxacarb and permethrin in P. xylostella further supports the notion that the mode of action of these insecticides on the insect sodium channel is different. Copyright © 2006 Society of Chemical Industry [source] Linkage of genes for sodium channel and cytochrome P450 (CYP6B10) in Heliothis virescensPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 2 2002Sujin Park Abstract Genetic linkage of hscp (heliothis sodium channel protein) and CYP6B10 was discovered in Heliothis virescens. The hscp gene encodes the sodium channel target of pyrethroid insecticides and cytochrome P450 genes encode important enzymes involved in detoxication of various pesticides. Previously, two mechanisms, nerve insensitivity due to sodium channel and synergism by propynyl aryl ethers, were observed in pyrethroid-resistant H virescens and were not separated by repeated back-crossing. We hypothesized genetic linkage of target site insensitivity and monooxygenase-mediated detoxication. Single nucleotide polymorphisms were discovered in IIS6 of hscp; Hpy of hscp and CYP6B10. Segregation of these and other markers was tested in backcrosses. We observed co-segregation of hscp to CYP6B10, but both genes assorted independently of y, ye and sex. Genes y and ye assorted independently of each other. This was the first observation of linkage between genes controlling detoxication and sodium ion channel insensitivity in a species known to express high levels of pyrethroid resistance. Linkage was not likely because this species has 31 chromosomes; therefore, we will investigate the possibility of a resistance cassette. We expect similar linkage in other noctuid pests. © 2001 Society of Chemical Industry [source] DNA-based genotyping techniques for the detection of point mutations associated with insecticide resistance in Colorado potato beetle Leptinotarsa decemlineata,PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 10 2001J Marshall Clark Abstract Three DNA-based genotyping techniques, bi-directional PCR amplification of specific allele (bi-PASA), single-stranded conformational polymorphism (SSCP) and minisequencing, have been developed and compared for the detection of the S291G (insensitive acetylcholinesterase) and L1014F (insensitive sodium channel) mutations associated with azinphos-methyl and permethrin resistance, respectively, in the Colorado potato beetle (Leptinotarsa decemlineata). Extraction of genomic DNA from individual neonates that were hatched from previously collected egg masses is the most efficient and reliable means to obtain suitable templates in terms of convenience, economy, speed and DNA quality. Bi-PASA, employing two allele-specific primers, appears to be the most efficient and rapid genotyping method for the simultaneous detection of both resistant/susceptible homozygous (SS, RR) and heterozygous (SR) alleles. Its resolution, however, is strongly dependent on the quality of template genomic DNA. SSCP also allows unambiguous genotyping, including the detection of heterozygous alleles, and is less dependent on template DNA quality, but requires a longer processing time. Minisequencing is amenable to a 96-well microtiter plate format for the processing of a large number of samples and allows direct detection of resistant/susceptible homozygous alleles but is not as efficient as the PASA and SSCP in detecting heterozygous alleles. In considering the advantages and disadvantages of each technique, DNA-based genotyping is best employed in combinations, with the bi-PASA as the primary method and the SSCP and minisequencing as the secondary validating methods. These methods are rugged, rapid, cost-effective and capable of resolving SS, RR and SR individuals. The availability of such DNA-based genotyping techniques, using neonate genomic DNA as templates, will enable the precise monitoring of the resistant and susceptible allele frequencies, including those of heterozygote individuals, in field populations of L decemlineata. © 2001 Society of Chemical Industry [source] Aldosterone responsiveness of the epithelial sodium channel (ENaC) in colon is increased in a mouse model for Liddle's syndromeTHE JOURNAL OF PHYSIOLOGY, Issue 2 2008Marko Bertog Liddle's syndrome is an autosomal dominant form of human hypertension, caused by gain-of-function mutations of the epithelial sodium channel (ENaC) which is expressed in aldosterone target tissues including the distal colon. We used a mouse model for Liddle's syndrome to investigate ENaC-mediated Na+ transport in late distal colon by measuring the amiloride-sensitive transepithelial short circuit current (,ISC-Ami) ex vivo. In Liddle mice maintained on a standard salt diet, ,ISC-Ami was only slightly increased but plasma aldosterone (PAldo) was severely suppressed. Liddle mice responded to a low or a high salt diet by increasing or decreasing, respectively, their PAldo and ,ISC-Ami. However, less aldosterone was required in Liddle animals to achieve similar or even higher Na+ transport rates than wild-type animals. Indeed, the ability of aldosterone to stimulate ,ISC-Ami was about threefold higher in Liddle animals than in the wild-type controls. Application of aldosterone to colon tissue in vitro confirmed that ENaC stimulation by aldosterone was not only preserved but enhanced in Liddle mice. Aldosterone-induced transcriptional up-regulation of the channel's ,- and ,-subunit (,ENaC and ,ENaC) and of the serum- and glucocorticoid-inducible kinase 1 (SGK1) was similar in colon tissue from Liddle and wild-type animals, while aldosterone had no transcriptional effect on the ,-subunit (,ENaC). Moreover, Na+ feedback regulation was largely preserved in colon tissue of Liddle animals. In conclusion, we have demonstrated that in the colon of Liddle mice, ENaC-mediated Na+ transport is enhanced with an increased responsiveness to aldosterone. This may be pathophysiologically relevant in patients with Liddle's syndrome, in particular on a high salt diet, when suppression of PAldo is likely to be insufficient to reduce Na+ absorption to an appropriate level. [source] CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytesTHE JOURNAL OF PHYSIOLOGY, Issue 3 2005G. Nagel The cystic fibrosis transmembrane conductance regulator (CFTR) plays a crucial role in regulating fluid secretion by the airways, intestines, sweat glands and other epithelial tissues. It is well established that the CFTR is a cAMP-activated, nucleotide-dependent anion channel, but additional functions are often attributed to it, including regulation of the epithelial sodium channel (ENaC). The absence of CFTR-dependent ENaC inhibition and the resulting sodium hyperabsorption were postulated to be a major electrolyte transport abnormality in cystic fibrosis (CF)-affected epithelia. Several ex vivo studies, including those that used the Xenopus oocyte expression system, have reported ENaC inhibition by activated CFTR, but contradictory results have also been obtained. Because CFTR,ENaC interactions have important implications in the pathogenesis of CF, the present investigation was undertaken by our three independent laboratories to resolve whether CFTR regulates ENaC in oocytes and to clarify potential sources of previously reported dissimilar observations. Using different experimental protocols and a wide range of channel expression levels, we found no evidence that activated CFTR regulates ENaC when oocyte membrane potential was carefully clamped. We determined that an apparent CFTR-dependent ENaC inhibition could be observed when resistance in series with the oocyte membrane was not low enough or the feedback voltage gain was not high enough. We suggest that the inhibitory effect of CFTR on ENaC reported in some earlier oocyte studies could be attributed to problems arising from high levels of channel expression and suboptimal recording conditions, that is, large series resistance and/or insufficient feedback voltage gain. [source] |