Home About us Contact | |||
SOD1
Kinds of SOD1 Terms modified by SOD1 Selected AbstractsVascular endothelial growth factor prevents G93A-SOD1-induced motor neuron degenerationDEVELOPMENTAL NEUROBIOLOGY, Issue 13 2009J. Simon Lunn Abstract Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder characterized by selective loss of motor neurons (MNs). Twenty percent of familial ALS cases are associated with mutations in Cu2+/Zn2+ superoxide dismutase (SOD1). To specifically understand the cellular mechanisms underlying mutant SOD1 toxicity, we have established an in vitro model of ALS using rat primary MN cultures transfected with an adenoviral vector encoding a mutant SOD1, G93A-SOD1. Transfected cells undergo axonal degeneration and alterations in biochemical responses characteristic of cell death such as activation of caspase-3. Vascular endothelial growth factor (VEGF) is an angiogenic and neuroprotective growth factor that can increase axonal outgrowth, block neuronal apoptosis, and promote neurogenesis. Decreased VEGF gene expression in mice results in a phenotype similar to that seen in patients with ALS, thus linking loss of VEGF to the pathogenesis of MN degeneration. Decreased neurotrophic signals prior to and during disease progression may increase MN susceptibility to mutant SOD1-induced toxicity. In this study, we demonstrate a decrease in VEGF and VEGFR2 levels in the spinal cord of G93A-SOD1 ALS mice. Furthermore, in isolated MN cultures, VEGF alleviates the effects of G93A-SOD1 toxicity and neuroprotection involves phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling. Overall, these studies validate the usefulness of VEGF as a potential therapeutic factor for the treatment of ALS and give valuable insight into the responsible signaling pathways and mechanisms involved. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source] The occurrence of mutations in FUS in a Belgian cohort of patients with familial ALSEUROPEAN JOURNAL OF NEUROLOGY, Issue 5 2010P. Van Damme Background and purpose:, Mutations in fused in sarcoma (FUS) were recently identified as a cause of familial amyotrophic lateral sclerosis (ALS). The frequency of occurrence of mutations in FUS in sets of patients with familial ALS remains to be established. Methods:, We sequenced the FUS gene in a cohort of patients with familial ALS seen at the neuromuscular clinic in Leuven. A total of 28 patients with SOD1 -negative ALS from 22 families were analyzed. Results:, We identified a R521H mutation in 4 patients, belonging to a kindred of dominantly inherited classical ALS. The mutation segregated with disease. Mutations in FUS were observed in 2.9% of ALS pedigrees in our cohort. Conclusions:, These results show that mutations in FUS are also a significant cause of familial ALS in Belgium. [source] Altered sensorimotor development in a transgenic mouse model of amyotrophic lateral sclerosisEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2004Julien Amendola Abstract Most neurodegenerative diseases become manifest at an adult age but abnormalities or pathological symptoms appear earlier. It is important to identify the initial mechanisms underlying such progressive neurodegenerative disease in both humans and animals. Transgenic mice expressing the familial amyotrophic lateral sclerosis (ALS)-linked mutation (G85R) in the enzyme superoxide dismutase 1 (SOD1) develop motor neuron disease at 8,10 months of age. We address the question of whether the mutation has an early impact on spinal motor networks in postnatal mutant mice. Behavioural tests showed a significant delay in righting and hind-paw grasping responses in mutant SOD1G85R mice during the first postnatal week, suggesting a transient motor deficit compared to wild-type mice. In addition, extracellular recordings from spinal ventral roots in an in vitro brainstem,spinal cord preparation demonstrated different pharmacologically induced motor activities between the two strains. Rhythmic motor activity was difficult to evoke with N -methyl- dl -aspartate and serotonin at the lumbar levels in SOD1G85R mice. In contrast to lumbar segments, rhythmic activity was similar in the sacral roots from the two strains. These results strongly support the fact that the G85R mutation may have altered lumbar spinal motor systems much earlier than previously recognized. [source] Decrease of Hsp25 protein expression precedes degeneration of motoneurons in ALS-SOD1 miceEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2004Arjen Maatkamp Abstract We have investigated the expression of Hsp25, a heat shock protein constitutively expressed in motoneurons, in amyotrophic lateral sclerosis (ALS) mice that express G93A mutant SOD1 (G93A mice). Immunocytochemistry and Western blotting showed that a decrease of Hsp25 protein expression occurred in motoneurons of G93A mice prior to the onset of motoneuron death and muscle weakness. This decrease in Hsp25 expression also preceded the appearance of SOD1 aggregates as identified by cellulose acetate filtration and Western blot analysis. In contrast to Hsp25 protein levels, Hsp25 mRNA as determined by in situ hybridization and RT-PCR, remained unchanged. This suggests that the decrease in Hsp25 protein levels occurs post-transcriptionally. In view of the cytoprotective properties of Hsp25 and the temporal relationship between decreased Hsp25 expression and the onset of motoneuron death, it is feasible that reduced Hsp25 concentration contributes to the degeneration of motoneurons in G93A mice. These data are consistent with the idea that mutant SOD1 may reduce the availability of the protein quality control machinery in motoneurons. [source] Stabilization of mutant Cu/Zn superoxide dismutase (SOD1) protein by coexpressed wild SOD1 protein accelerates the disease progression in familial amyotrophic lateral sclerosis miceEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2001Kei Fukada Abstract Transgenic mice carrying familial amyotrophic lateral sclerosis (FALS)-linked mutant Cu/Zn superoxide dismutase (SOD1) genes such as G93A (G93A-mice) and G85R (G85R-mice) genes develop limb paresis. Introduction of human wild type SOD1 (hWT-SOD1) gene, which does not cause motor impairment by itself, into different FALS mice resulted in different effects on their clinical courses, from no effect in G85R-mice to acceleration of disease progression in G93A-mice. However, the molecular mechanism which causes the observed difference, has not been clarified. We hypothesized that the difference might be caused by the stability of mutant SOD1 proteins. Using a combination of mass spectrometry and enzyme-linked immunosorbent assay, we found that the concentration of G93A-SOD1 protein was markedly elevated in tissues of transgenic mice carrying both G93A - and hWT-SOD1 genes (G93A/hWT-mice) compared to that in G93A-mice, and also found that the concentration of G93A-SOD1 protein had a close relation to the disease duration. The concentration of metallothionein-I/II in the spinal cord, reflecting the degree of copper-mediated oxidative stress, was highest in G93A/hWT-mice, second in G93A-mice, and normal in the mice carrying hWT-SOD1 gene. These results indicated that the increase of G93A-SOD1 protein was responsible for the increase of oxidative stress and disease acceleration in G93A/hWT-mice. We speculate that coexpression of hWT-SOD1 protein is deleterious to transgenic mice carrying a stable mutant such as G93A-SOD1, because this mutant protein is stabilized by hWT-SOD1 protein, but not to transgenic mice carrying an unstable mutant such as G85R-SOD1, because this mutant protein is not stabilized by hWT-SOD1. [source] Transcriptional profiling of the Candida albicans Ssk1p receiver domain point mutants and their virulenceFEMS YEAST RESEARCH, Issue 5 2008Veena Menon Abstract The Ssk1p response regulator of Candida albicans is required for oxidant adaptation, survival in human neutrophils, and virulence in a disseminated murine model of candidiasis. We have previously shown that the amino acid residues D556 and D513 of the Ssk1p receiver domain are critical to the Ssk1p in oxidant stress adaptation and morphogenesis. Herein, transcriptional profiling is used to explain the oxidant sensitivity and morphogenesis defect of two point mutants (D556N and D513K, respectively) compared with a WT strain. In the D556N mutant, during oxidative stress (5 mM H2O2), a downregulation of genes associated with redox homeostasis and oxidative stress occurred, which accounted for about 5% of all gene changes, including among others, SOD1 (superoxide dismutase), CAP1 (required for some types of oxidant stress), and three genes encoding glutathione biosynthesis proteins (GLR1, GSH1, and GSH2). Mutant D513K was not sensitive to peroxide but was impaired in its yeast $/to hyphal transition. We noted downregulation of genes associated with morphogenesis and cell elongation. Virulence of each mutant was also evaluated in a rat vaginitis model of candidiasis. Clearance of an SSK1 null and the D556N mutants from the vaginal canal was significantly greater than wild type or the D513K mutant, indicating that a change in a single amino acid of the Ssk1p alters the ability of this strain to colonize the rat vaginal mucosa. [source] D90A- SOD1 mediated amyotrophic lateral sclerosis: A single founder for all cases with evidence for a Cis -acting disease modifier in the recessive haplotype,,HUMAN MUTATION, Issue 6 2002Matthew J. Parton Abstract More than 100 different heterozygous mutations in copper/zinc superoxide dismutase (SOD1) have been found in patients with amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. Uniquely, D90A- SOD1 has been identified in recessive, dominant and apparently sporadic pedigrees. The phenotype of homozygotes is stereotyped with an extended survival, whereas that of affected heterozygotes varies. The frequency of D90A- SOD1 is 50 times higher in Scandinavia (2.5%) than elsewhere, though ALS prevalence is not raised there. Our earlier study indicated separate founders for recessive and dominant/sporadic ALS and we proposed a disease-modifying factor linked to the recessive mutation. Here we have doubled our sample set and employed novel markers to characterise the mutation's origin and localise any modifying factor. Linkage disequilibrium analysis indicates that D90A homozygotes and heterozygotes share a rare haplotype and are all descended from a single ancient founder (alpha 0.974) c.895 generations ago. Homozygotes arose subsequently only c.63 generations ago (alpha 0.878). Recombination has reduced the region shared by recessive kindreds to 97-265 kb around SOD1, excluding all neighbouring genes. We propose that a cis -acting regulatory polymorphism has arisen close to D90A- SOD1 in the recessive founder, which decreases ALS susceptibility in heterozygotes and slows disease progression. © 2002 Wiley-Liss, Inc. [source] Oxidative stress parameters after combined fluoxetine and acetylsalicylic acid therapy in depressive patientsHUMAN PSYCHOPHARMACOLOGY: CLINICAL AND EXPERIMENTAL, Issue 4 2009Piotr Ga, ecki Abstract Objective There are numerous reports indicating disturbed equilibrium between oxidative processes and antioxidative defense in patients with depression. Moreover, depressive patients are characterized by the presence of elements of an inflammatory process, which is one of the sources of reactive oxygen species (ROS). In view of the above, it was decided to study both the effect of fluoxetine monotherapy and that of fluoxetine co-administered with acetylsalicylic acid on lipid peroxidation and antioxidative defense in patients with the first depressive episode in their life. Method Seventy seven patients with major depressive disorder (MDD), divided into two groups were included in the study. The first group, consisting of 52 patients, received fluoxetine 20 mg, and the second one, in addition to fluoxetine 20 mg, received 150 mg of acetylsalicylic acid. The activity of antioxidative enzymes, copper-zinc superoxide dismutase (CuZnSOD, SOD1), catalase (CAT), glutathione peroxidase (GPSH-x) and the concentration of malonyldialdehyde (MDA) was determined in erythrocytes, whereas the total antioxidant status (TAS) was determined in the plasma. All parameters were measured before and after three month therapy. Results The obtained results indicate a significant decrease in the activity of SOD1, CAT and GSHP-x, as well as in MDA concentration after the combined therapy. Also a significant TAS increase was observed after the combined therapy. The study demonstrated that combined therapy with fluoxetine and ASA is characterized by the same efficacy and clinical safety as fluoxetine monotherapy, resulting additionally in improvement of oxidative stress parameters in the patients treated for depression. Copyright © 2009 John Wiley & Sons, Ltd. [source] Down-regulation of endothelial adhesion molecules and leukocyte adhesion by treatment with superoxide dismutase is beneficial in chronic immune experimental colitisINFLAMMATORY BOWEL DISEASES, Issue 10 2005Joaquim Seguí PhD Abstract Modulation of adhesion molecule expression that govern trafficking of leukocytes into the inflamed intestine is envisioned as a new strategy for treatment of inflammatory bowel disease (IBD). This study was designed to determine the impact of reducing oxidative stress on adhesion molecules expression and leukocyte recruitment in experimental chronic colitis. For that purpose, colitic interleukin-10 knockout and wild-type mice were studied. Groups of animals were treated with Cu/Zn superoxide dismutase (SOD1) 13 mg/kg/d or vehicle for either 7 or 14 days. Expression of vascular cell adhesion molecule-1 and mucosal addressin cell adhesion molecule-1 were determined; leukocyte-endothelial cell interactions in colonic venules were studied with intravital microscopy; and changes in colon pathology and biomarkers of colitis severity were determined. Development of colitis was associated with a marked increase in endothelial vascular cell adhesion molecule-1 and mucosal addressin cell adhesion molecule-1 expression, which were significantly reduced by treatment with SOD1. The increase in leukocyte rolling and adhesion in colonic venules of colitic mice were significantly reduced by administration of SOD1. This treatment markedly reduced colonic lipid hydroperoxidation, myeoloperoxidase activity, and plasma levels of serum amyloid A protein and resulted in significant, although modest, reductions in histologic damage score. The therapeutic value of SOD1 when administered prophylactically was assessed in the dextran sulfate sodium model of colitis with similar positive results. These results indicate that SOD1 affords significant amelioration of colonic inflammatory changes in experimental colitis. Down-regulation of adhesion molecule expression, reduction of lipid hydroperoxidation, and recruitment of leukocytes into the inflamed intestine contribute to this beneficial effect. [source] Immunoreactivity of the phosphorylated axonal neurofilament H subunit (pNF-H) in blood of ALS model rodents and ALS patients: evaluation of blood pNF-H as a potential ALS biomarkerJOURNAL OF NEUROCHEMISTRY, Issue 5 2009Kevin Boylan Abstract Levels of neurofilament subunits, potential biomarkers of motor axon breakdown, are increased in amyotrophic lateral sclerosis (ALS) patient's CSF but data on blood are not available. We measured blood levels of the phosphorylated axonal form of neurofilament H (pNF-H) by ELISA in transgenic rodent models of superoxide dismutase 1 (SOD1) ALS, and in 20 ALS patients and 20 similar aged controls monthly for 4 months. All symptomatic rodent ALS models showed robust levels of blood pNF-H, while control rodents or mice transgenic for unmutated SOD1 showed no detectable blood pNF-H. Average pNF-H levels in the G93A SOD1 mouse progressively increased from day 74 through death (day ,130). Median blood pNF-H level in ALS patients was 2.8-fold higher than controls (p < 0.001). Median ALSFRS-R declined a median of 0.8 pt/month (p < 0.001); higher baseline pNF-H level appeared to be associated with faster ALSFRS-R decline over 4 months (p = 0.087). The median rate of decline in ALSFRS-R was 1.9 pt/month in patients with baseline pNF-H levels above the median pNF-H value of 0.53 ng/mL; ALSFRS-R declined at a median of 0.6 pt/month in patients below this level. The pNF-H levels were relatively stable month to month in individual patients, raising questions regarding the molecular pathogenesis of ALS. Baseline control human pNF-H levels were higher in men than women and increased minimally over time. These data suggest that blood pNF-H can be used to monitor axonal degeneration in ALS model rodents and support further study of this protein as a potential biomarker of disease prognosis in ALS patients. [source] Expression of mutant SOD1G93A in astrocytes induces functional deficits in motoneuron mitochondriaJOURNAL OF NEUROCHEMISTRY, Issue 5 2008Lynsey G. Bilsland Abstract Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motoneuron degeneration resulting in paralysis and eventual death. ALS is regarded as a motoneuron-specific disorder but increasing evidence indicates non-neuronal cells play a significant role in disease pathogenesis. Although the precise aetiology of ALS remains unclear, mutations in the superoxide dismutase (SOD1) gene are known to account for approximately 20% of familial ALS. We examined the influence of SOD1G93A expression in astrocytes on mitochondrial homeostasis in motoneurons in a primary astrocyte : motoneuron co-culture model. SOD1G93A expression in astrocytes induced changes in mitochondrial function of both SOD1G93A and wild-type motoneurons. In the presence of SOD1G93A astrocytes, mitochondrial redox state of both wild-type and SOD1G93A motoneurons was more reduced and mitochondrial membrane potential decreased. While intra-mitochondrial calcium levels [Ca2+]m were elevated in SOD1G93A motoneurons, changes in mitochondrial function did not correlate with [Ca2+]m. Thus, expression of SOD1G93A in astrocytes directly alters mitochondrial function even in embryonic motoneurons, irrespective of genotype. These early deficits in mitochondrial function induced by surrounding astrocytes may increase the vulnerability of motoneurons to other neurotoxic mechanisms involved in ALS pathogenesis. [source] Retrograde axonal transport and motor neuron diseaseJOURNAL OF NEUROCHEMISTRY, Issue 2 2008Anna-Lena Ström Abstract Transport of material between extensive neuronal processes and the cell body is crucial for neuronal function and survival. Growing evidence shows that deficits in axonal transport contribute to the pathogenesis of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here we review recent data indicating that defects in dynein-mediated retrograde axonal transport are involved in ALS etiology. We discuss how mutant copper-zinc superoxide dismutase (SOD1) and an aberrant interaction between mutant SOD1 and dynein could perturb retrograde transport of neurotrophic factors and mitochondria. A possible contribution of axonal transport to the aggregation and degradation processes of mutant SOD1 is also reviewed. We further consider how the interference with axonal transport and protein turnover by mutant SOD1 could influence the function and viability of motor neurons in ALS. [source] Evidence of calcium- and SNARE-dependent release of CuZn superoxide dismutase from rat pituitary GH3 cells and synaptosomes in response to depolarizationJOURNAL OF NEUROCHEMISTRY, Issue 3 2007Mariarosaria Santillo Abstract The antioxidant enzyme CuZn superoxide dismutase (SOD1) is secreted by many cell lines. However, it is not clear whether SOD1 secretion is only constitutive or can be regulated in an activity-dependent fashion. Using rat pituitary GH3 cells that express voltage-dependent calcium channels and are subjected to Ca2+ oscillations, we found that treatment with high K+ -induced SOD1 release that was significantly higher than the constitutive secretion. Evoked SOD1 release was correlated with depolarization-dependent calcium influx and was virtually abolished by removal of extracellular calcium with EGTA or by pre-incubation of GH3 cells with Botulinum toxin A that cleaves the SNARE protein SNAP-25. Immunofluorescence experiments performed in GH3 cells and rat brain synaptosomes showed that K+ -depolarization induced a marked depletion of intracellular SOD1 immunoreactivity, an effect that was again abolished in the absence of extracellular calcium or after treatment with Botulinum toxin A. Subcellular fractionation analysis showed that SOD1 was present in large dense core vesicles. These data clearly show that, in addition to the constitutive SOD1 secretion, depolarization induces an additional rapid calcium-dependent SOD1 release in GH3 cells and in rat brain synaptosomes. This likely occurs through exocytosis from SOD1-containing vesicles operated by the SNARE complex. [source] Amyotrophic lateral sclerosis: all roads lead to RomeJOURNAL OF NEUROCHEMISTRY, Issue 5 2007Jose-Luis Gonzalez de Aguilar Abstract Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease characterized by degeneration of upper and lower motor neurons, generalized weakness and muscle atrophy. Most cases of ALS appear sporadically but some forms of the disease result from mutations in the gene encoding the antioxidant enzyme Cu/Zn superoxide dismutase (SOD1). Several other mutated genes have also been found to predispose to ALS including, among others, one that encodes the regulator of axonal retrograde transport dynactin. As all roads lead to the proverbial Rome, we discuss here how distinct molecular pathways may converge to the same final result that is motor neuron death. We critically review the basic research on SOD1-linked ALS to propose a pioneering model of a ,systemic' form of the disease, causally involving multiple cell types, either neuronal or non-neuronal. Contrasting this, we also postulate that other neuron-specific defects, as those triggered by dynactin dysfunction, may account for a primary motor neuron disease that would represent ,pure' neuronal forms of ALS. Identifying different disease subtypes is an unavoidable step toward the understanding of the physiopathology of ALS and will hopefully help to design specific treatments for each subset of patients. [source] Oxidative modulation of nuclear factor-,B in human cells expressing mutant fALS-typical superoxide dismutasesJOURNAL OF NEUROCHEMISTRY, Issue 5 2002Arianna Casciati Abstract Previous evidence supports the notion of a redox regulation of protein phosphatase calcineurin that might be relevant for neurodegenerative processes where an imbalance between generation and removal of reactive oxygen species occurs. We have recently observed that calcineurin activity is depressed in human neuroblastoma cells expressing Cu,Zn superoxide dismutase (SOD1) mutant G93A and in brain areas from G93A transgenic mice, and that mutant G93A-SOD1 oxidatively inactivates calcineurin in vitro. We have studied the possibility that, by interfering directly with calcineurin activity, mutant SOD1 can modulate pathways of signal transduction mediated by redox-sensitive transcription factors. In this paper, we report a calcineurin-dependent activation of nuclear factor-,B (NF-,B) induced by the expression of familial amyotrophic lateral sclerosis (fALS)-SOD1s in human neuroblastoma cell lines. Alteration of the phosphorylation state of I,B, (the inhibitor of NF-,B translocation into the nucleus) and induction of cyclooxygenase 2 are consistent with the up-regulation of this transcription factor in this system. All of these modifications might be relevant to signaling pathways involved in the pathogenesis of fALS. [source] Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosisJOURNAL OF NEUROCHEMISTRY, Issue 5 2002Makoto Urushitani Abstract Accumulating evidence indicates that abnormal conformation of mutant superoxide dismutase 1 (SOD1) is an essential feature underlying the pathogenesis of mutant SOD1-linked familial amyotrophic lateral sclerosis (ALS). Here we investigated the role of ubiquitin-proteasome pathway in the mutant SOD1-related cell death and the effect of oxidative stress on the misfolding of mutant SOD1. Transient overexpression of ubiquitin with human SOD1 (wild-type, ala4val, gly85arg, gly93ala) in Neuro2A cells decreased the amount of mutant SOD1, but not of wild-type, while only mutants were co-immunoprecipitated with poly-ubiquitin. Proteasome inhibition by lactacystin augmented accumulation of mutant SOD1 in the non-ionic detergent-insoluble fraction. The spinal cord lysates from mutant SOD1 transgenic mice showed multiple carbonylated proteins, including mutant SOD1 with SDS-resistant dimer formation. Furthermore, the treatment of hSOD1-expressing cells with hydrogen peroxide promoted the oligomerization, and detergent-insolubility of mutant SOD1 alone, and the oxidized mutant SOD1 proteins were more heavily poly-ubiquitinated. In Neuro2A cells stably expressing human SOD1 protein, the proteasome function measured by chymotrypsin-like activity, was decreased over time without a quantitative alteration of the 20S proteasomal component. Finally, primary motor neurons from the mouse embryonic spinal cord were more vulnerable to lactacystin than non-motor neurons. These results indicate that the sustained expression of mutant SOD1 leads to proteasomal inhibition and motor neuronal death, which in part explains the pathogenesis of mutant SOD1-linked ALS. [source] Hypothyroid state does not protect but delays neuronal death in the hippocampal CA1 region following transient cerebral ischemia: Focus on oxidative stress and gliosisJOURNAL OF NEUROSCIENCE RESEARCH, Issue 12 2010Choong Hyun Lee Abstract We investigated protective effects of hypothyroidism on delayed neuronal death, gliosis, lipid peroxidation and Cu,Zn-superoxide dismutase (SOD1) in the gerbil hippocampal CA1 region (CA1) after 5 min of transient cerebral ischemia. The hypothyroidism was induced by 0.025% methimazole treatment. Free triiodothyronine and thyroxine levels were markedly decreased in the hypothyroid group. Four days after ischemia/reperfusion, only a few NeuN-immunoreactive (+) neurons were detected in the CA1 of euthyroid-ischemia (eu-ischemia) group; however, at this time point, the number of NeuN+ neurons was significantly higher in the hypothyroid-ischemia (hypo-ischemia) group than in the eu-ischemia group. At 5 days postischemia, NeuN+ neurons were significantly decreased in the hypo-ischemia group: The number of NeuN+ neurons in this group was similar to that in the eu-ischemia group. Activations of GFAP+ astrocytes and Iba-1+ microglia in the CA1 were higher in the eu-ischemia group 3 and 4 days after ischemia/reperfusion. At 5 days postischemia, the activations of both the glial cells in the CA1 were similar between the two groups. 4-Hydroxy-2-nonenal (HNE), a marker for lipid peroxidation, immunoreactivity in the eu-ischemia group was higher than in the hypo-ischemia group; at 5 days postischemia, the immunoreactivity was similar between the two groups. In contrast, SOD1 level was lower in the CA1 of the eu-ischemia group. These results suggest that hypothyroid state does not protect against delayed neuronal death but only delays the neuronal death in the hippocampal CA1 region after transient cerebral ischemia by reducing lipid peroxidation and increasing SOD1. © 2010 Wiley-Liss, Inc. [source] Therapeutic benefits of intrathecal protein therapy in a mouse model of amyotrophic lateral sclerosisJOURNAL OF NEUROSCIENCE RESEARCH, Issue 13 2008Yasuyuki Ohta Abstract When fused with the protein transduction domain (PTD) derived from the human immunodeficiency virus TAT protein, proteins can cross the blood,brain barrier and cell membrane and transfer into several tissues, including the brain, making protein therapy feasible for various neurological disorders. We have constructed a powerful antiapoptotic modified Bcl-XL protein (originally constructed from Bcl-XL) fused with PTD derived from TAT (TAT-modified Bcl-XL), and, to examine its clinical effectiveness in a mouse model of familial amyotrophic lateral sclerosis (ALS), transgenic mice expressing human Cu/Zn superoxide dismutase (SOD1) bearing a G93A mutation were treated by intrathecal infusion of TAT-modified Bcl-XL. We demonstrate that intrathecally infused TAT-fused protein was effectively transferred into spinal cord neurons, including motor neurons, and that intrathecal infusion of TAT-modified Bcl-XL delayed disease onset, prolonged survival, and improved motor performance. Histological studies show an attenuation of motor neuron loss and a decrease in the number of cleaved caspase 9-, cleaved caspase 3-, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells in the lumbar cords of TAT-modified Bcl-XL -treated G93A mice. Our results indicate that intrathecal protein therapy using a TAT-fused protein is an effective clinical tool for the treatment of ALS. © 2008 Wiley-Liss, Inc. [source] Impaired SDF1/CXCR4 signaling in glial progenitors derived from SOD1G93A miceJOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2007Yongquan Luo Abstract Mutations in the superoxide dismutase 1 (SOD1) gene are associated with familial amyotrophic lateral sclerosis (ALS), and the SOD1G93A transgenic mouse has been widely used as one animal model for studies of this neurodegenerative disorder. Recently, several reports have shown that abnormalities in neuronal development in other models of neurodegeneration occur much earlier than previously thought. To study the role of mutant SOD1 in glial progenitor biology, we immortalized glial restricted precursors (GRIPs) derived from mouse E11.5 neural tubes of wild-type and SOD1G93A mutant mice. Immunocytochemistry using cell lineage markers shows that these cell lines can be maintained as glial progenitors, because they continue to express A2B5, with very low levels of glial fibrillary acidic protein (astrocyte), ,III-tubulin (neuron), and undetected GalC (oligodendrocyte) markers. RT-PCR and immunoblot analyses indicate that the chemokine receptor CXCR4 is reduced in SOD1G93A GRIPs. Subsequently, SOD1G93A GRIPs are unable to respond to SDF1, to activate ERK1/2 enzymes and the transcription factor CREB. This may be one pathway leading to a reduction in SOD1G93A cell migration. These data indicate that the abnormalities in SOD1G93A glial progenitor expression of CXCR4 and its mediated signaling and function occur during spinal cord development and highlight nonneuronal (glial) abnormalities in this ALS model. © 2007 Wiley-Liss, Inc. [source] Disease progression of human SOD1 (G93A) transgenic ALS model ratsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2006Arifumi Matsumoto Abstract The recent development of a rat model of amyotrophic lateral sclerosis (ALS) in which the rats harbor a mutated human SOD1 (G93A) gene has greatly expanded the range of potential experiments, because the rats' large size permits biochemical analyses and therapeutic trials, such as the intrathecal injection of new drugs and stem cell transplantation. The precise nature of this disease model remains unclear. We described three disease phenotypes: the forelimb-, hindlimb-, and general-types. We also established a simple, non-invasive, and objective evaluation system using the body weight, inclined plane test, cage activity, automated motion analysis system (SCANET), and righting reflex. Moreover, we created a novel scale, the Motor score, which can be used with any phenotype and does not require special apparatuses. With these methods, we uniformly and quantitatively assessed the onset, progression, and disease duration, and clearly presented the variable clinical course of this model; disease progression after the onset was more aggressive in the forelimb-type than in the hindlimb-type. More importantly, the disease stages defined by our evaluation system correlated well with the loss of spinal motor neurons. In particular, the onset of muscle weakness coincided with the loss of approximately 50% of spinal motor neurons. This study should provide a valuable tool for future experiments to test potential ALS therapies. © 2005 Wiley-Liss, Inc. [source] Protective effects of atypical antipsychotic drugs on PC12 cells after serum withdrawalJOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2002Ou Bai Abstract Atypical antipsychotic drugs are widely used in the treatment of schizophrenia, and clinical evidence has shown that early and prolonged intervention with these drugs will improve the long-term outcome. It is still unclear, however, whether the atypical antipsychotic drugs are also neuroprotective. To clarify this matter, we used PC12 cell cultures and the MTT assay for cell viability to determine whether various concentrations of the atypical antipsychotics clozapine, quetiapine, and risperidone are neuroprotective after serum withdrawal. In addition, to explore the drugs' actions, Northern blot was used to examine the gene expression of SOD1 (Cu/Zn superoxide dismutase) and p75NTR (p75 neurotrophin receptor). The results demonstrated that 1) the antipsychotic drugs can protect PC12 cells from death after serum withdrawal; cell viability in these drug treatment groups is significantly different from that in the groups without serum in the medium (P < 0.01); and 2) these drugs up-regulated the SOD1 gene expression to more than 120% (P < 0.05) and also down-regulated p75NTR mRNA levels to less than 65% of their respective control values (P < 0.05). These findings suggest that the atypical antipsychotics clozapine, quetiapine, and risperidone may exert a neuroprotective function through the modulation of SOD1 and p75NTR expression. © 2002 Wiley-Liss, Inc. [source] Oxidative stress and antioxidant enzyme upregulation in SOD1-G93A mouse skeletal muscleMUSCLE AND NERVE, Issue 6 2006Douglas J. Mahoney PhD Abstract Amyotrophic lateral sclerosis (ALS) is caused by motor neuron loss in the spinal cord, but the mechanisms responsible are not known. Ubiquitous transgenic overexpression of copper/zinc superoxide dismutase (SOD1) mutations causing familial ALS (SOD1mut) leads to an ALS phenotype in mice; however, restricted expression of SOD1mut in neurons alone is not sufficient to cause this phenotype, suggesting that non-neuronal SOD1mut expression is also required for disease manifestation. Recently, several investigators have suggested that SOD1mut -mediated oxidative stress in skeletal muscle may contribute to ALS pathogenesis. The purpose of this study was to examine oxidative stress and antioxidant enzyme adaptation in 95-day-old SOD1-G93A skeletal muscle. We observed significant elevations in both malondialdehyde (22% and 31% in red and white gastrocnemius, respectively) and protein carbonyls (53% in red gastrocnemius) in SOD1-G93A mice. Copper/zinc SOD activity was higher in red and white SOD1-G93A gastrocnemius (7- and 10-fold, respectively), as was manganese SOD (4- and 5-fold, respectively) and catalase (2- and 2.5-fold, respectively). Taken together, our data demonstrate oxidative stress and compensatory antioxidant enzyme upregulation in SOD1-G93A skeletal muscle. Muscle Nerve, 2006 [source] Activation of STAT3 and inhibitory effects of pioglitazone on STAT3 activity in a mouse model of SOD1-mutated amyotrophic lateral sclerosisNEUROPATHOLOGY, Issue 4 2010Noriyuki Shibata Signal transducer and activator of transcription-3 (STAT3) is a member of the proinflammatory transcription factor STAT family. Several studies have documented implications for neuroinflammation in amyotrophic lateral sclerosis (ALS). We recently demonstrated activation of STAT3 in spinal cords obtained at autopsy from sporadic ALS patients. To determine the involvement of STAT3 and effects of pioglitazone on STAT3 activity in familial ALS with superoxide dismutase-1 (SOD1) mutation, we performed immunoblot and immunohistochemical analyses of the active form of STAT3 (p-STAT3) in spinal cords from mice overexpressing mutant SOD1 (ALS mice) and nontransgenic littermates (control mice). Immunoblot analysis delineated significant increases in nuclear p-STAT3 levels in non-treated ALS mice as compared with pioglitazone-treated ALS mice and non-treated and pioglitazone-treated control mice. Immunohistochemical analysis revealed prominent p-STAT3 accumulations in the nucleus of motor neurons, reactive astrocytes and activated microglia in non-treated ALS mice but not pioglitazone-treated ALS mice and non-treated and pioglitazone-treated control mice. The present results provide in vivo evidence for increased phosphorylative activation and nuclear translocation of STAT3 in motor neurons and glia in mouse motor neuron disease, suggesting a common pathological process between sporadic and SOD1-mutated familial forms of ALS. Moreover, it is likely that pioglitazone may exert inhibitory effects on STAT3-mediated proinflammtory mechanisms in this disease. [source] Japanese familial amyotrophic lateral sclerosis family with a two-base deletion in the superoxide dismutase-1 geneNEUROPATHOLOGY, Issue 1 2001Yasuhiro Watanabe The clinical characteristics of members of a familial amyotrophic lateral sclerosis (FALS) family from Oki Island, whose members have a 2-bp deletion at codon 126 of Cu/Zn superoxide dismutase (SOD1) gene, are presented here. Mean age of the onset in the members was 42 years. Mean disease duration among the members who had not been placed on a respirator was approximately 2 years. Long-term survivors with respiratory support presented disturbances in eye movement and urination toward the end stages of the disease. They predominantly exhibited lower motor neuron symptoms. In addition, the authors focused on frameshift, nonsense and non-amino-acid-altering mutations. Frameshift and nonsense mutations were all found within exon 4, exon 5 and intron 4. These amyotrophic lateral sclerosis cases were likely to have shorter disease duration than the FALS patients with single substitution. Several hypotheses were presented on the pathogenesis of FALS with SOD1 mutation. [source] Formation of advanced glycation end-product-modified superoxide dismutase-1 (SOD1) is one of the mechanisms responsible for inclusions common to familial amyotrophic lateral sclerosis patients with SOD1 gene mutation, and transgenic mice expressing human SOD1 gene mutationNEUROPATHOLOGY, Issue 1 2001Shinsuke Kato Neuronal Lewy body-like hyaline inclusions (LBHI) and astrocytic hyaline inclusions (Ast-HI) are morphological hallmarks of certain familial amyotrophic lateral sclerosis (FALS) patients with superoxide dismutase-1 (SOD1) gene mutations, and transgenic mice expressing the human SOD1 gene mutation. The ultrastructure of inclusions in both diseases is identical: the essential common constituents are granule-coated fibrils approximately 15, 25 nm in diameter and granular materials. Detailed immunohistochemical analyses have shown that the essential common protein of the inclusions in both diseases is an SOD1 protein. This finding, together with the immunoelectron microscopy finding that the abnormal granule-coated fibrils comprising the inclusions are positive for SOD1, indicates that these granule-coated fibrils containing SOD1 are important evidence for mutant SOD1-linked disease in human and mouse. For im-munoelectron microscopy, the granule-coated fibrils are modified by advanced glycation endproducts (AGE) such as N, -carboxymethyl lysine, pyrraline and pentosidine (Maillard reaction). Based on the fact that AGE themselves are insoluble molecules with direct cytotoxic effects, the granule-coated fibrils and granular materials are not digested by the lysosomal and ubiquitin systems. The neurons and astrocytes of the normal individuals and non-transgenic mice show no significant immunoreactivity for AGE. Considered with the mutant-SOD1 aggregation toxicity, a portion of the SOD1 comprising both types of the inclusion is modified by the AGE, and the formation of the AGE-modified SOD1 (probably AGE-modified mutant SOD1) is one of the mechanisms responsible for the aggregation (i.e. granule-coated fibril formation). [source] Characterization of the caspase cascade in a cell culture model of SOD1-related familial amyotrophic lateral sclerosis: expression, activation and therapeutic effects of inhibitionNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 5 2005S. Sathasivam There is increasing evidence that apoptosis or a similar programmed cell death pathway is the mechanism of cell death responsible for motor neurone degeneration in amyotrophic lateral sclerosis. Knowledge of the relative importance of different caspases in the cell death process is at present incomplete. In addition, there is little information on the critical point of the death pathway when the process of dying becomes irreversible. In this study, using the well-established NSC34 motor neurone-like cell line stably transfected with empty vector, normal or mutant human Cu-Zn superoxide dismutase (SOD1), we have characterized the activation of the caspase cascade in detail, revealing that the activation of caspases-9, -3 and -8 are important in motor neurone death and that the presence of mutant SOD1 causes increased activation of components of the apoptotic cascade under both basal culture conditions and following oxidative stress induced by serum withdrawal. Activation of the caspases identified in the cellular model has been confirmed in the G93A SOD1 transgenic mice. Furthermore, investigation of the effects of anti-apoptotic neuroprotective agents including specific caspase inhibitors, minocycline and nifedipine, have supported the importance of the mitochondrion-dependent apoptotic pathway in the death process and revealed that the upstream caspase cascade needs to be inhibited if useful neuro-protection is to be achieved. [source] Protein aggregation in motor neurone disordersNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 6 2003J. D. Wood Toxicity associated with abnormal protein folding and protein aggregation are major hypotheses for neurodegeneration. This article comparatively reviews the experimental and human tissue-based evidence for the involvement of such mechanisms in neuronal death associated with the motor system disorders of X-linked spinobulbar muscular atrophy (SBMA; Kennedy's disease) and amyotrophic lateral sclerosis (ALS), especially disease related to mutations in the superoxide dismutase (SOD1) gene. Evidence from transgenic mouse, Drosophila and cell culture models of SBMA, in common with other trinucleotide repeat expansion disorders, show protein aggregation of the mutated androgen receptor, and intraneuronal accumulation of aggregated protein, to be obligate mechanisms. Strong experimental data link these phenomena with downstream biochemical events involving gene transcription pathways (CREB-binding protein) and interactions with protein chaperone systems. Manipulations of these pathways are already established in experimental systems of trinucleotide repeat disorders as potential beneficial targets for therapeutic activity. In contrast, the evidence for the role of protein aggregation in models of SOD1-linked familial ALS is less clear-cut. Several classes of intraneuronal inclusion body have been described, some of which are invariably present. However, the lack of understanding of the biochemical basis of the most frequent inclusion in sporadic ALS, the ubiquitinated inclusion, has hampered research. The toxicity associated with expression of mutant SOD1 has been intensively studied however. Abnormal protein aggregation and folding is the only one of the four major hypotheses for the mechanism of neuronal degeneration in this disorder currently under investigation (the others comprise oxidative stress, axonal transport and cytoskeletal dysfunctions, and glutamatergic excitotoxicity). Whilst hyaline inclusions, which are strongly immunoreactive to SOD1, are linked to degeneration in SOD1 mutant mouse models, the evidence from human tissue is less consistent and convincing. A role for mutant SOD1 aggregation in the mitochondrial dysfunction associated with ALS, and in potentially toxic interactions with heat shock proteins, both leading to apoptosis, are supported by some experimental data. Direct in vitro data on mutant SOD1 show evidence for spontaneous oligomerization, but the role of such oligomers remains to be elucidated, and therapeutic strategies are less well developed for this familial variant of ALS. [source] Insights into yeast adaptive response to the agricultural fungicide mancozeb: A toxicoproteomics approachPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 3 2009Pedro M. Santos Abstract Toxicogenomics has the potential to elucidate gene,environment interactions to identify genes that are affected by a particular chemical at the early stages of the toxicological response and to establish parallelisms between different organisms. The fungicide mancozeb, widely used in agriculture, is an ethylene-bis-dithiocarbamate complex with manganese and zinc. Exposure to this pesticide has been linked to the development of idiopathic Parkinson's disease and cancer. Given that many signalling pathways and their molecular components are substantially conserved among eukaryotic organisms, we used Saccharomyces cerevisiae to get insights into the molecular mechanisms of mancozeb toxicity and adaptation based on expression proteomics. The early global response to mancozeb was analysed by quantitative proteomics using 2-DE. The target genes (e.g. TSA1, TSA2, SOD1, SOD2, AHP1, GRE2, GRX1, CYS3, PRE3, PRE6, PRE8, PRE9, EFT1, RPS5, TIF11, HSP31, HSP26, HSP104, HSP60, HSP70 -family) and the putative main transcription activators (e.g. Yap1, Msn2/Msn4, Met4, Hsf1, Aft1, Pdr1, Skn7, Rpn4p, Gcn4) of the complex mancozeb-induced expression changes are related with yeast response to stress, in particular to oxidative stress, protein translation initiation and protein folding, disassembling of protein aggregates and degradation of damaged proteins. Our results also suggest that this study provided powerful indications that may be useful to expand the knowledge obtained in yeast not only to the global response to mancozeb toxicity in phytopathogenic fungi but also to humans. [source] A Mutation that Creates a Pseudoexon in SOD1 Causes Familial ALSANNALS OF HUMAN GENETICS, Issue 6 2009Paul N. Valdmanis Summary Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease which targets motor neurons of the cortex, brainstem and spinal cord. About 5,10% of all amyotrophic lateral sclerosis cases are familial (FALS), and 15,20% of FALS cases are caused by mutations in the zinc-copper superoxide dismutase gene (SOD1). We identified a large family from France with ten members affected with ALS. Linkage was established to the SOD1 locus on chromosome 21 and genomic and cDNA sequencing was performed for the SOD1 gene. This revealed an activated pseudoexon between exons 4 and 5 that was present in two tested members of the family. Translation of this 43 base pair exon results in the introduction of seven amino acids before a stop codon is present, leading to a prematurely truncated SOD1 protein product of 125 amino acids. Sequencing intron 4 in a patient revealed a heterozygous change 304 bp before exon 5 (c.358 , 304C > G), but only 5 bp after the cryptic exon, thus causing this alternative splice product. This mutation segregated in all affected individuals of the family. This adds an additional genetic mechanism for developing SOD1 -linked ALS and is one which can be more readily targeted by gene therapy. [source] Lack of evidence of monomer/misfolded superoxide dismutase-1 in sporadic amyotrophic lateral sclerosis,ANNALS OF NEUROLOGY, Issue 1 2009Hsueh-Ning Liu PhD Objective In familial amyotrophic lateral sclerosis (fALS) harboring superoxide dismutase (SOD1) mutations (fALS1), SOD1 toxicity has been linked to its propensity to misfold and aggregate. It has recently been proposed that misfolded SOD1 may be causative of all types of ALS, including sporadic cases (sALS). In the present study, we have used a specific antibody to test for the presence of monomer/misfolded SOD1 in sALS. Methods Sections from lumbar spinal cords of 5 fALS1 cases, 13 sALS cases, and 1 non-SOD1 fALS case were labeled immunocytochemically using SOD1-exposed-dimer-interface (SEDI) antibody, which we have previously validated as being specific for pathological monomer/misfolded forms of SOD1. Results Monomer/misfolded SOD1 was detected with SEDI antibody in all 5 of the fALS1 cases, localizing predominantly to hyaline conglomerate inclusions, a specific pathological feature of fALS1. In contrast, monomer/misfolded SOD1 was not detected in any of the 13 sALS cases or in the non-SOD1 fALS cases. These results were confirmed by immunoprecipitation. Interpretation Although SEDI antibody does not necessarily label all misfolded forms of SOD1, these findings show a distinct difference between fALS1 and sALS, and do not support that monomer/misfolded SOD1 is a common disease entity linking all types of ALS. This is important to our understanding of ALS disease pathogenesis and to considerations of the applicability of using therapeutics that target misfolded SOD1 to non-SOD1-related cases. Ann Neurol 2009;66:75,80 [source] |