SOC Fraction (soc + fraction)

Distribution by Scientific Domains


Selected Abstracts


In search of stable soil organic carbon fractions: a comparison of methods applied to soils labelled with 14C for 40 days or 40 years

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2008
S. Bruun
Summary A reliable method for the isolation of a stable fraction of soil organic carbon (SOC) would be very helpful for improving our understanding of the mechanisms responsible for stabilization of SOC and the dynamics of SOC turnover. We tested acid hydrolysis, physical fractionation (particle density/size), photo-oxidation, treatment with chemical oxidants (NaOCl and NaS2O8) and thermal treatment on two soils incubated with 14C-labelled barley straw for either 40 days or 40 years. Different intensities of the treatments were included. Acid hydrolysis, photo-oxidation and treatment with a chemical oxidant consistently removed more 40-year-old C than 40-day-old C, which suggests that the isolated fractions contained a large proportion of material with a relatively rapid turnover. The clay + silt associated SOC fraction contained a small proportion of 40-day-old C and a large proportion of 40-year-old C. This is consistent with a SOC fraction with medium turnover. The thermal treatment removed more 40-year-old C than 40-day-old C. At 400°C there was still a small proportion of the 40-year-old C remaining, whereas almost all the 40-day-old C was removed. This is consistent with a stable SOC fraction. However, because only 2,3% of the C remained after this treatment, the isolated SOC fraction may be of little quantitative importance. Furthermore, the thermally resistant fraction is likely to be heavily altered by the treatment, and therefore unsuitable for further studies of the chemical nature of stable SOC. [source]


Is thermal oxidation at different temperatures suitable to isolate soil organic carbon fractions with different turnover?

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 1 2010
Mirjam Helfrich
Abstract Findings of previous studies suggest that there are relations between thermal stability of soil organic matter (SOM), organo-mineral associations, and stability of SOM against microbial decay. We aimed to test whether thermal oxidation at various temperatures (200°C, 225°C, 275°C, 300°C, 400°C, or 500°C) is capable of isolating SOM fractions with increasing stability against microbial degradation. The investigation was carried out on soils (Phaeozem and Luvisol) under different land-use regimes (field, grassland, forest). The stability of the obtained soil organic carbon (SOC) fractions was determined using the natural- 13C approach for continuously maize-cropped soils and radiocarbon dating. In the Luvisol, thermal oxidation with increasing temperatures did not yield residual SOC fractions of increasing microbial stability. Even the SOC fraction resistant to thermal oxidation at 300°C contained considerable amounts of young, maize-derived C. In the Phaeozem, the mean 14C age increased considerably (from 3473 y BP in the mineral-associated SOC fraction to 9116 y BP in the residual SOC fraction after thermal oxidation at 300°C). An increasing proportion of fossil C (calculated based on 14C data) in residual SOC fractions after thermal oxidation with increasing temperatures indicated that this was mainly due to the relative accumulation of thermally stable fossil C. We conclude that thermal oxidation with increasing temperature was not generally suitable to isolate mineral-associated SOC fractions of increasing microbial stability. [source]


Development of a stable isotope index to assess decadal-scale vegetation change and application to woodlands of the Burdekin catchment, Australia

GLOBAL CHANGE BIOLOGY, Issue 7 2007
EVELYN KRULL
Abstract Forty-four study sites were established in remnant woodland in the Burdekin River catchment in tropical north-east Queensland, Australia, to assess recent (decadal) vegetation change. The aim of this study was further to evaluate whether wide-scale vegetation ,thickening' (proliferation of woody plants in formerly more open woodlands) had occurred during the last century, coinciding with significant changes in land management. Soil samples from several depth intervals were size separated into different soil organic carbon (SOC) fractions, which differed from one another by chemical composition and turnover times. Tropical (C4) grasses dominate in the Burdekin catchment, and thus ,13C analyses of SOC fractions with different turnover times can be used to assess whether the relative proportion of trees (C3) and grasses (C4) had changed over time. However, a method was required to permit standardized assessment of the ,13C data for the individual sites within the 13 Mha catchment, which varied in soil and vegetation characteristics. Thus, an index was developed using data from three detailed study sites and global literature to standardize individual isotopic data from different soil depths and SOC fractions to reflect only the changed proportion of trees (C3) to grasses (C4) over decadal timescales. When applied to the 44 individual sites distributed throughout the Burdekin catchment, 64% of the sites were shown to have experienced decadal vegetation thickening, while 29% had remained stable and the remaining 7% had thinned. Thus, the development of this index enabled regional scale assessment and comparison of decadal vegetation patterns without having to rely on prior knowledge of vegetation changes or aerial photography. [source]


Is thermal oxidation at different temperatures suitable to isolate soil organic carbon fractions with different turnover?

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 1 2010
Mirjam Helfrich
Abstract Findings of previous studies suggest that there are relations between thermal stability of soil organic matter (SOM), organo-mineral associations, and stability of SOM against microbial decay. We aimed to test whether thermal oxidation at various temperatures (200°C, 225°C, 275°C, 300°C, 400°C, or 500°C) is capable of isolating SOM fractions with increasing stability against microbial degradation. The investigation was carried out on soils (Phaeozem and Luvisol) under different land-use regimes (field, grassland, forest). The stability of the obtained soil organic carbon (SOC) fractions was determined using the natural- 13C approach for continuously maize-cropped soils and radiocarbon dating. In the Luvisol, thermal oxidation with increasing temperatures did not yield residual SOC fractions of increasing microbial stability. Even the SOC fraction resistant to thermal oxidation at 300°C contained considerable amounts of young, maize-derived C. In the Phaeozem, the mean 14C age increased considerably (from 3473 y BP in the mineral-associated SOC fraction to 9116 y BP in the residual SOC fraction after thermal oxidation at 300°C). An increasing proportion of fossil C (calculated based on 14C data) in residual SOC fractions after thermal oxidation with increasing temperatures indicated that this was mainly due to the relative accumulation of thermally stable fossil C. We conclude that thermal oxidation with increasing temperature was not generally suitable to isolate mineral-associated SOC fractions of increasing microbial stability. [source]