Snail Populations (snail + population)

Distribution by Scientific Domains


Selected Abstracts


Lethal and non-lethal effects of multiple indigenous predators on the invasive golden apple snail (Pomacea canaliculata)

FRESHWATER BIOLOGY, Issue 10 2004
Nils Carlsson
Summary 1. We investigated the individual and combined effects of two predators (the climbing perch, Anabas testudineus, and the wetland crab, Esanthelphusa nimoafi) indigenous to wetlands in Laos, on the behaviour and survival of the invasive South American golden apple snail (Pomacea canaliculata). The snail is considered a pest, consuming large amounts of rice and other aquatic vegetation in the region. 2. Snail avoidance reactions to released predator chemical cues were investigated in aquaria while the effects of predators on a mixed snail population were studied in field enclosures that contained native aquatic plants (Salvinia cucullata, Ludwigia adscendens and Ipomoea aquatica). 3. In the aquaria experiment, neonate (2,3 mm) and medium-sized snails (8,10 mm) responded to fish chemical cues by going to the surface, whereas adult snails (35,40 mm) went to the bottom. In contrast, no size class of snails reacted to chemical cues released by crabs. 4. In the field experiment, fish reduced the abundance of neonate snails, and crabs reduced the abundance of all size classes. The effect of the combined predators could not be predicted from the mortality rate observed in single predator treatments. The survival of neonate and medium-sized snails was greater and of adults less than expected. The presence of predators did not affect egg production. Snails consumed significant amounts of plants despite the presence of predators. 5. Our findings suggest that some indigenous Asian predators have lethal and sublethal effects on P. canaliculata that depend on snail size and predator type. When in the presence of several predators the response of snails to one predator may either increase or decrease the vulnerability of snails to the others. [source]


Opposite shell-coiling morphs of the tropical land snail Amphidromus martensi show no spatial-scale effects

ECOGRAPHY, Issue 4 2006
Paul G. Craze
Much can be learned about evolution from the identification of those factors maintaining polymorphisms in natural populations. One polymorphism that is only partially understood occurs in land snail species where individuals may coil clockwise or anti-clockwise. Theory shows that polymorphism in coiling direction should not persist yet species in several unrelated groups of land snails occur in stably polymorphic populations. A solution to this paradox may advance our understanding of evolution in general. Here, we examine two possible explanations: firstly, negative frequency-dependent selection due to predation; secondly, random fixation of alternative coiling morphs in tree-sized demes, giving the impression of wider polymorphism. We test these hypotheses by investigating morph-clustering of empty shells at two spatial scales in Amphidromus martensi populations in northern Borneo: the spatial structure of snail populations is relatively easy to estimate and this information may support one or other of the hypotheses under test. For the smaller scale we make novel use of a statistic previously used in botanical studies (the K-function statistic), which allows clustering of more than one morph to be simultaneously investigated at a range of scales and which we have corrected for anisotropy. We believe this method could be of more general use to ecologists. The results show that consistent clustering or separation of morphs cannot be clearly detected at any spatial scale and that predation is not frequency-dependent. Alternative explanations that do not require strong spatial structuring of the population may be needed, for instance ones involving a mechanism of selection actively maintaining the polymorphism. [source]


Impact of Copper Sulfate on Plankton in Channel Catfish Nursery Ponds

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 1 2009
Charles C. Mischke
Many fish culturists are interested in applying copper sulfate pentahydrate (CSP) to channel catfish, Ictalurus punctatus, nursery ponds as a prophylactic treatment for trematode infection and proliferative gill disease by killing snails and Dero sp., respectively, before stocking fry. However, copper is an algaecide and may adversely affect phytoplankton and zooplankton populations. We evaluated the effects of prophylactic use of copper sulfate in catfish nursery ponds on water quality and phytoplankton and zooplankton populations. In 2006, treatments of 0 mg/L CSP, 3 mg/L CSP (0.77 mg/L Cu), and 6 mg/L CSP (1.54 mg/L Cu) were randomly assigned to 0.04-ha ponds. In 2007, only treatments of 0 and 3 mg/L CSP were randomly assigned to the 16 ponds. Ponds treated with CSP had significantly higher pH and significantly lower total ammonia concentrations. Treatment of both CSP rates increased total algal concentrations but reduced desirable zooplankton groups for catfish culture. CSP has been shown to be effective in reducing snail populations at the rate used in this study. CSP treatment also appears to be beneficial to the algal bloom, shifting the algal population to green algae and increasing total algal biomass within 1 wk after CSP treatment. Although zooplankton populations were adversely affected, populations of important zooplankton to catfish fry began rebounding 6,12 d after CSP treatment. Therefore, if CSP is used to treat catfish fry ponds of similar water composition used in this study, fry should not be stocked for about 2 wk after CSP application to allow time for the desirable zooplankton densities to begin increasing. [source]


Small effective population sizes in a widespread selfing species, Lymnaea truncatula (Gastropoda: Pulmonata)

MOLECULAR ECOLOGY, Issue 9 2004
C. MEUNIER
Abstract We present here a spatial and temporal population genetic survey of a common freshwater snail, also a predominantly selfing species, Lymnaea truncatula. The rate of genetic diversity loss was quantified by estimating the effective size (Ne) of the snail populations, using two different methods. A temporal survey allowed estimation of a variance effective size of the populations, and a spatial survey allowed the estimation of an inbreeding effective size, from two-locus identity disequilibria estimates. Both methods were consistent and provided low Ne values. Drift due to (i) high amounts of selfing and (ii) fluctuations in population sizes because of temporary habitats, and also selection coupled to genome-wide linkage disequilibria, could explain such reductions in Ne. The loss of genetic diversity appears to be counterbalanced only very partially by low apparent rates of gene flow. [source]


Lack of molluscan host diversity and the transmission of an emerging parasitic disease in Bolivia

MOLECULAR ECOLOGY, Issue 5 2001
C. Meunier
Abstract Fasciolosis is a re-emerging parasitic disease that affects an increasing number of people in developing countries. The most severe endemic affects the Bolivian Altiplano, where the liver fluke (Fasciola hepatica) and its hermaphroditic snail host, Lymnaea truncatula, have been introduced from Europe. To achieve a better understanding of the epidemiological situation and the consequences of the colonization event of this invasive species, genetic analysis of Bolivian snail populations was needed. Here we compare the genetic diversity and population structure of snail samples from the Bolivian Altiplano with samples from the Old World at six polymorphic microsatellite loci. Whereas some variability exists in the snail populations from the Old World, we observe only a single genotype of L. truncatula in the Bolivian Altiplano. We discuss the possible explanations for such a reduction in genetic variability, and, given the high natural parasitism pressures exerted on the snail populations, we discuss the relevance of this result for host,parasite interactions. [source]


Predator, prey and pathogen interactions in introduced snail populations

ANIMAL CONSERVATION, Issue 3 2001
J. Gerlach
The introduction of the carnivorous snail Euglandina rosea to Pacific islands by biological control programmes has had a devastating effect on native snail populations. In most areas the target species, Achatina fulica, has not been affected, although some unsubstantiated reports have led to E. rosea being viewed as an effective control agent. Data from recent laboratory and field studies of E. rosea were combined into a simple model of the interactions between populations of E. rosea and A. fulica and a disease agent. Predictions from the model correspond closely with field data from a number of sites. The model suggests that apparent reductions in A. fulica numbers following E. rosea introduction are the result of a combination of predation and disease effects, and that although the maximum population levels are reduced the population is stabilized at a relatively high level. The model predicts that both A. fulica and E. rosea populations will persist. Partulidae will decline following E. rosea invasion although Samoana spp. may persist at reduced densities. More effective control of A. fulica can be achieved through manual collecting. Control of E. rosea requires the imposition of a significant novel mortality factor. [source]