Home About us Contact | |||
Smallest Scale (smallest + scale)
Selected AbstractsBIODIVERSITY RESEARCH: Native-exotic species richness relationships across spatial scales and biotic homogenization in wetland plant communities of Illinois, USADIVERSITY AND DISTRIBUTIONS, Issue 5 2010Hua Chen Abstract Aim, To examine native-exotic species richness relationships across spatial scales and corresponding biotic homogenization in wetland plant communities. Location, Illinois, USA. Methods, We analysed the native-exotic species richness relationship for vascular plants at three spatial scales (small, 0.25 m2 of sample area; medium, 1 m2 of sample area; large, 5 m2 of sample area) in 103 wetlands across Illinois. At each scale, Spearman's correlation coefficient between native and exotic richness was calculated. We also investigated the potential for biotic homogenization by comparing all species surveyed in a wetland community (from the large sample area) with the species composition in all other wetlands using paired comparisons of their Jaccard's and Simpson's similarity indices. Results, At large and medium scales, native richness was positively correlated with exotic richness, with the strength of the correlation decreasing from the large to the medium scale; at the smallest scale, the native-exotic richness correlation was negative. The average value for homogenization indices was 0.096 and 0.168, using Jaccard's and Simpson's indices, respectively, indicating that these wetland plant communities have been homogenized because of invasion by exotic species. Main Conclusions, Our study demonstrated a clear shift from a positive to a negative native-exotic species richness relationship from larger to smaller spatial scales. The negative native-exotic richness relationship that we found is suggested to result from direct biotic interactions (competitive exclusion) between native and exotic species, whereas positive correlations likely reflect the more prominent influence of habitat heterogeneity on richness at larger scales. Our finding of homogenization at the community level extends conclusions from previous studies having found this pattern at much larger spatial scales. Furthermore, these results suggest that even while exhibiting a positive native-exotic richness relationship, community level biotas can/are still being homogenized because of exotic species invasion. [source] Predictive models of habitat preferences for the Eurasian eagle owl Bubo bubo: a multiscale approachECOGRAPHY, Issue 1 2003Jose Antonio Martínez Habitat preference of eagle owls Bubo bubo were examined through comparing habitat composition around 51 occupied cliffs and 36 non-occupied cliffs in Alicante (E Spain). We employed Generalized Linear Models to examine patterns of habitat preference at three different spatial scales: nest site (7 km2), home range (25 km2), and landscape (100 km2). At the nest site scale, occupied cliffs were more rugged, had a greater proportion of forest surface in the surroundings, and were further from the nearest paved road than unoccupied cliffs. Additionally, probability of having an occupied cliff increased when there was another occupied territory in the surroundings. At both the home range scale and the landscape scale, high probabilities of presence of eagle owls were related to high percentages of Mediterranean scrubland around the cliffs, which are the preferred habitat of European rabbits Oryctolagus cuniculus, the main prey of the owls. We suggest a hierarchical process of habitat selection in the eagle owl concerning suitable trophic resources at the broadest scales and adequate sites for breeding and roosting at the smallest scale. However, it should be noted that some structural features such as the proximity of roads were not necessarily avoided by the owls, but their presence were possibly constrained by systematic killing of individuals. Our paper provides new evidence for the requirement of multi-scale approaches to gain insight into both the different limiting factors for the persistence of populations and the role of individual perception of the environment in the evolution of habitat selection. [source] Population substructures in the soil invertebrate Orchesella cincta, as revealed by microsatellite and TE-AFLP markersMOLECULAR ECOLOGY, Issue 6 2003A. W. G. Van Der Wurff Abstract Microsatellite and three enzyme,amplified fragment length polymorphism (TE-AFLP) DNA markers were used to describe the population genetic structure in the soil dwelling collembolan Orchesella cincta (L.). Two forests were sampled according to a three-level nested hierarchical design, with fixed distances among samples within a parcel and among parcels within a forest. The largest component of variation was found at the smallest scale, within parcels (77,97%), while the smallest component of variation was found between forests. The two different methods to study population structure indicated a similar allocation of variance. Population genetic substructuring was revealed between samples on a scale of 50 m; the degree of substructuring however, varied between parcels and forests. One forest showed a high degree of structure as revealed by microsatellites, while another showed a low degree of structure. A significant deviation from random-mating (average FIS = 0.23) over the two forests was detected. Two of 18 samples showed a difference in population genetic structure between males and females. We discuss the fact that the population genetic structure of O. cincta is significantly affected by long-range dispersal, even though it is a small and wingless insect. This interpretation is supported by observations on tree-climbing behaviour in this species that may facilitate air dispersal. As a consequence, the assumption that migration a priori may be neglected in demographic analysis of O. cincta is incorrect. [source] Multi-scale responses of plant species diversity in semi-natural buffer strips to agricultural landscapesAPPLIED VEGETATION SCIENCE, Issue 2 2008Maohua Ma Question: How does agricultural land usage affect plant species diversity in semi-natural buffer strips at multiple scales? Location: Lepsämä River watershed, Nurmijärvi, Southern Finland. Methods: Species diversity indicators included both richness and evenness. Plant communities in buffer strips were surveyed in 29 sampling sites. Using ArcGIS Desktop 9.0 (ArcInfo) and Fragstats 3.3 for GIS analysis, the landscape composition around each sampling site was characterized by seven parameters in square sectors at five scales: 4, 36, 100, 196, and 324ha. For each scale, Principle Component Analysis was used to examine the importance of each structural metric to diversity indicators using multiple regression and other simple analyses. Results: For all but the smallest scales (4 ha), two structural metrics including the diversity of land cover types and percentage of arable land were positively and negatively correlated with species richness, respectively. Both metrics had the highest correlation coefficients for species richness at the second largest scale (196 ha). The density of arable field edges between the fields was the only metric that correlated with species evenness for all scales, which had highest predictive power at the second smallest scale (36 ha). Conclusions: Species richness and evenness of buffer strips had scale-dependent relationships to land use in agricultural ecosystems. The results of this study indicated that species richness depends on the pattern of arable land use at large scales, which may relate to the regional species pool. Meanwhile, species evenness depended on the level of field edge density at small scales, which relates to how the nearby farmland was divided by the edges (e.g. many small-scale fields with high edge density or a few big-scale fields with low edge density). This implies that it is important to manage the biodiversity of buffer strips within a landscape context at multiple scales. [source] |