Smaller Populations (smaller + population)

Distribution by Scientific Domains


Selected Abstracts


Movement characteristics of the Scarce Blue-tailed Damselfly, Ischnura pumilio

INSECT CONSERVATION AND DIVERSITY, Issue 1 2010
KATHERINE A. ALLEN
Abstract., 1. The Scarce Blue-tailed Damselfly, Ischnura pumilio, is threatened in the UK and exists in small, transient colonies. Consequently, little is known about its dispersal characteristics. This study investigates movement in two contrasting habitats with the aim of informing conservation management on a landscape scale. 2. Mark-release-recapture studies were performed at an established colony in the New Forest and a smaller population in the Red River valley in southern England. A total of 2304 individuals was marked. 3. Ischnura pumilio was found to be exceptionally sedentary. Mean gross lifetime movement was 56 m and 43% of individuals moved <50 m in their lifetime. Movements over 150 m were very rare. Maximum lifetime movement was 1165 m. As such, I. pumilio is the most sedentary odonate studied in the UK to date. 4. Movement was inversely density dependent, which has important conservation implications if individuals attempt to emigrate from small populations because of low density. The presence of parasitic mites (Hydryphantes sp.) significantly increased movement distance. 5. Ischnura pumilio had a low dispersal probability compared to other damselflies. As the smallest British odonate, this is in keeping with the relationship between size and dispersal found across taxa. 6. Ischnura pumilio has been regarded as a ,wandering opportunist' due to its tendency to appear in locations far from known sites. However, this study suggests that long range movement rarely occurs from prime habitat that is maintained in an early successional stage. This has implications for the conservation of the species in the UK. [source]


Hypertension in Minority Populations

JOURNAL OF CLINICAL HYPERTENSION, Issue 5 2006
Keith C. Ferdinand MD
The US population, by percentage, shows a trend toward increased proportions of citizens identified as minorities. Whereas in 2000, according to the US Census Bureau, 71.4% of the population was self-identified as white; this group is expected to decrease to 61.9% by 2025. The proportion of blacks and African Americans from 2000 vs. 2025 is expected to increase from 12.2% to 12.9%. Also, in the smaller population of American-Indian, Eskimo, and Aleutian natives, growth is projected from 0.7% to 0.8%. Asians and Pacific Islanders as a category will become a larger proportion, from 3.9% to 6.2%. The largest increase in proportion will be seen in those identified as Hispanic (of any race), from 11.8% in 2002 to 18.2% in 2025. [source]


Liver transplantation in neonates

LIVER TRANSPLANTATION, Issue 8 2003
Shikha S. Sundaram
Orthotopic liver transplantation (OLT) has evolved over the past two decades to become the standard of care for end-stage liver disease in infants and children. Technical advances, particularly the use of technical variant allografts, have permitted extension of OLT into a much younger and smaller population than previously possible. Major centers around the world now routinely perform OLT in infants with survival success equivalent to that in older children and adults. We are beginning to see a small population of school-aged children who were infant OLT recipients. The further extension of OLT into neonates is more recent, with only a few pediatric centers reporting survival success. Very little is known about this frontier of transplantation. Our intent is to provide an overview of neonatal OLT using all available data and our experience in the field [source]


Do male and female black-backed woodpeckers respond differently to gaps in habitat?

EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 3 2010
Jennifer C. Pierson
Abstract We used population- and individual-based genetic approaches to assess barriers to movement in black-backed woodpeckers (Picoides arcticus), a fire-specialist that mainly occupies the boreal forest in North America. We tested if male and female woodpeckers exhibited the same movement patterns using both spatially implicit and explicit genetic analyses to define population structure and movement patterns of both sexes among populations. Three genetic groups were identified, a large, genetically continuous population that spans from the Rocky Mountains to Quebec, a small isolated population in South Dakota and a separate population in the western portion of their distribution (Oregon). Patterns of genetic diversity suggest extensive gene flow mediated by both males and females within the continuous boreal forest. However, male-mediated gene flow is the main form of connectivity between the continuously distributed group and the smaller populations of South Dakota and Oregon that are separated by large areas of unforested habitat, which apparently serves as a barrier to movement of female woodpeckers. [source]


Habitat fragmentation and adaptation: a reciprocal replant,transplant experiment among 15 populations of Lychnis flos-cuculi

JOURNAL OF ECOLOGY, Issue 5 2008
Gillianne Bowman
Summary 1Habitat fragmentation and variation in habitat quality can both affect plant performance, but their effects have rarely been studied in combination. We thus examined plant performance in response to differences in habitat quality for a species subject to habitat fragmentation, the common but declining perennial herb Lychnis flos-cuculi. 2We reciprocally transplanted plants between 15 fen grasslands in north-east Switzerland and recorded plant performance for 4 years. 3Variation between the 15 target sites was the most important factor and affected all measures of plant performance in all years. This demonstrates the importance of plastic responses to habitat quality for plant performance. 4Plants from smaller populations produced fewer rosettes than plants from larger populations in the first year of the replant,transplant experiment. 5Plant performance decreased with increasing ecological difference between grassland of origin and target grassland, indicating adaptation to ecological conditions. In contrast, plant performance was not influenced by microsatellite distance and hardly by geographic distance between grassland of origin and target grassland. 6Plants originating from larger populations were better able to cope with larger ecological differences between transplantation site and site of origin. 7Synthesis: In addition to the direct effects of target grasslands, both habitat fragmentation, through reduced population size, and adaptation to habitats of different quality, contributed to the performance of L. flos-cuculi. This underlines that habitat fragmentation also affects species that are still common. Moreover, it suggests that restoration projects involving L. flos-cuculi should use plant material from large populations living in habitats similar to the restoration site. Finally, our results bring into question whether plants in small habitat remnants will be able to cope with future environmental change. [source]


The spread of apomixis and its effect on resident genetic variation

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2007
S. ADOLFSSON
Abstract In a simulation model we investigated how much of the initial genetic variation that is retained in a population after a dominant mutation has brought apomixis to fixation in it. A marker allele associated with the apomixis mutation is generally retained after the fixation of apomixis, particularly if the two alleles are closely linked. The spread of asexuality, however, normally leads to almost no loss of genetic variation, neither with respect to cytotypes nor with respect to genotypes. This holds for large populations and apomixis mutants with strong pollen production. In smaller populations, and with apomicts with reduced pollen production, the outcome is more variable, ranging from no genetic variation retained to only weakly reduced variability compared with the initial state. These results help explain the high genetic variability in many apomicts. They also imply that natural selection will have many genotypes to act on even after the spread of apomixis. [source]


Contrasting patterns of mitochondrial and microsatellite population structure in fragmented populations of greater prairie-chickens

MOLECULAR ECOLOGY, Issue 12 2003
Jeff A. Johnson
Abstract Greater prairie-chickens (Tympanuchus cupido pinnatus) were once found throughout the tallgrass prairie of midwestern North America but over the last century these prairies have been lost or fragmented by human land use. As a consequence, many current populations of prairie-chickens have become isolated and small. This fragmentation of populations is expected to lead to reductions in genetic variation as a result of random genetic drift and a decrease in gene flow. As expected, we found that genetic variation at both microsatellite DNA and mitochondrial DNA (mtDNA) markers was reduced in smaller populations, particularly in Wisconsin. There was relatively little range-wide geographical structure (FST) when we examined mtDNA haplotypes but there was a significant positive relationship between genetic (FST) and geographical distance (isolation by distance). In contrast, microsatellite DNA loci revealed significant geographical structure (FST) and a weak effect of isolation by distance throughout the range. These patterns were much stronger when populations with reduced levels of genetic variability (Wisconsin) were removed from the analyses. This suggests that the effects of genetic drift were stronger than gene flow at microsatellite loci, whereas these forces were in range-wide equilibrium at mtDNA markers. These differences between the two molecular markers may be explained by a larger effective population size (Ne) for mtDNA, which is expected in species such as prairie-chickens that have female-biased dispersal and high levels of polygyny. Our results suggest that historic populations of prairie-chickens were once interconnected by gene flow but current populations are now isolated. Thus, maintaining gene flow may be important for the long-term persistence of prairie-chicken populations. [source]


Assessing the long-term impact of Ranavirus infection in wild common frog populations

ANIMAL CONSERVATION, Issue 5 2010
A. G. F. Teacher
Abstract Amphibians are declining worldwide, and one cause of this is infectious disease emergence. Mass mortalities caused by a virus or a group of viruses belonging to the genus Ranavirus have occurred in wild common frogs Rana temporaria in England since the 1980s, and ranaviral disease is widespread in amphibians in North America and Canada, where it can also cause mass die-offs. Although there have been numerous reports of Ranavirus -associated mass mortality events, no study has yet evaluated the long-term impacts of this disease. This study follows up archived records of English common frog mortalities likely caused by Ranavirus. There is a preliminary indication that common frog populations can respond differently to the emergence of disease: emergence may be transient, catastrophic, or persistent with recurrent mortality events. We subsequently focused on populations that had recurring mortality events (n=18), and we report median declines of 81% in the number of adult frogs in these populations from 1996 to 2008. Comparable uninfected populations (n=16) showed no change in population size over the same time period. Regressions show that larger frog populations may be more likely to experience larger declines than smaller populations, and linear models show that percentage population size change is significantly correlated with disease status, but that habitat age (a possible proxy for environmental quality) has no significant effect on population size change. Our results provide the first evidence of long-term localized population declines of an amphibian species which appear to be best explained by the presence of Ranavirus infection. [source]