Smaller Particle Size (smaller + particle_size)

Distribution by Scientific Domains


Selected Abstracts


Particle size of powders under hydrothermal conditions

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 10 2003
Wen-Jun Li
Abstract Various non-oxide (CuI, AgI, AgCl, PbS, CuS and ZnS) and oxide (ZnO, TiO2, SnO2, CeO2 and ZrO2) powders were prepared under hydrothermal conditions to investigate the effects of temperature, pH and precursors on the particle size of powders. It was found that the particle sizes of PbS, CuS and ZnS powders were much smaller than that of CuI, AgI and AgCl powders prepared under the same conditions. The particle sizes of TiO2, SnO2, CeO2 and ZrO2 powders are much smaller than that of ZnO powders prepared under the same conditions. It is concluded that the solution conditions have a certain effect on the particle size of powders under the hydrothermal conditions. The particle size of powders increased with the rising of temperature. Additional factors affecting the particle size were uncovered through studying the nucleation mechanism. The particle size was mainly related to the Madelung constant and the electric charge number of ions. Powders with smaller particle size resulted from systems that possessed the larger Madelung constant and ionic charge number. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


The potential for estradiol and ethinylestradiol to sorb to suspended and bed sediments in some English rivers

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2002
Karlijn I. E. Holthaus
Abstract The endocrine-disrupting impact of steroid estrogens on fish will be strongly influenced by their distribution between sediment and water. Laboratory studies were performed to investigate the potential for sorption of 17,-estradiol (E2) and 17,-ethinylestradiol (EE2) to bed and suspended sediments taken from five British rivers. Sediment material was collected from the Rivers Aire and Calder (located in urban and industrialized areas in Yorkshire, UK), the River Thames (at a relatively rural site in Oxfordshire, UK), and from the estuaries of the Rivers Tees and Tyne. Using anaerobic conditions to inhibit biodegradation, it was found that 80 to 90% of binding to bed sediments was complete within 1 d, but that an equilibrium had not been reached after 2 d. Bed sediments gave distribution coefficients (Kd) ranging from 4 to 74 L/kg for E2 and from 8 to 121 L/kg for EE2 for samples taken over a range of seasons and locations. Sorption to suspended sediment gave Kd values ranging from 21 to 122 L/kg for E2 and 19 to 260 L/kg for EE2. However, these Kd values suggest less than 1% removal of the steroid estrogens from the aqueous phase given the ambient suspended sediment concentration. In the bed sediments, higher Kd values were associated with smaller particle size and higher organic carbon content. In most cases, the Kd values obtained for EE2 were higher than those for E2 by a factor of up to three. [source]


Enhanced compatibility of PA6/POE blends by POE- g -MAH prepared through ultrasound-assisted extrusion

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2010
Tingting Xie
Abstract The effects of POE- g -MAH, prepared through different methods, on morphology and properties of PA6/POE/POE- g -MAH blends are summarized in this article. The grafting degree of POE- g -MAH can be increased through the ultrasound-assisted extrusion. Experimental results showed that the addition of POE- g -MAH can increase the mechanical properties of the PA6/POE blend and decrease the particle size of POE dispersed phase in PA6 matrix due to the compatibilization by POE- g -MAH. The PA6/POE blend compatibilized by POE- g -MAH prepared through the ultrasound-assisted extrusion has smaller particle size of POE dispersed phase and higher notched Izod impact strength than that by POE- g -MAH with similar grafting degree initiated only by peroxide. This result is ascribed to some anhydride rings attached to the chain terminus of POE due to ultrasound initiation. Rheological and Molau test results also showed enhanced compatibilization of POE- g -MAH prepared through the ultrasound-assisted extrusion on the PA6/POE blend due to a structural difference of POE- g -MAH. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Supercritical antisolvent micronisation of synthetic all- trans -,-carotene with tetrahydrofuran as solvent and carbon dioxide as antisolvent

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 2 2009
Miguel A Tavares Cardoso
Abstract BACKGROUND: Supercritical antisolvent (SAS) micronisation of synthetic trans -,-carotene was studied using tetrahydrofuran (THF) as solvent and supercritical carbon dioxide (CO2) as antisolvent, with the objective of increasing its bioavailability and facilitating its dispersion in oil and emulsion formulations as a result of its smaller particle size. The micronised powder was analysed by scanning electron microscopy and high-performance liquid chromatography. Micronisation experiments were performed in order to evaluate the effects of temperature (308.15,333.15 K), pressure (6.5,13 MPa) and concentration of the liquid solution (6,9 g L,1). The effect of the supercritical CO2/THF flow ratio in the range between 4 and 44 (on a mass basis) was also analysed. Determinations of equilibrium concentrations of ,-carotene in the CO2/THF mixture were also performed. RESULTS: The particle size obtained ranged from 1 to 500 µm, with mean particle diameters around 100 µm. Three types of morphology were found in the precipitated powder: crystalline with superficial pores and leaf-like appearance; crystalline with regular shapes and blade-like edges; and crystalline without superficial pores and leaf-like apearance. The Peng,Robinson equation of state was used to calculate the density of the CO2/THF binary mixture, and the solubility of ,-carotene in this mixture was correlated with its density. CONCLUSION: The use of the SAS technique to micronise ,-carotene proved to be efficient, and the absence of degradation in the micronised powder allows the industrial application of this technique. Copyright © 2008 Society of Chemical Industry [source]


Microencapsulation by Spray Drying of Multiple Emulsions Containing Carotenoids

JOURNAL OF FOOD SCIENCE, Issue 7 2004
M.E. Rodríduez-Huezo
ABSTRACT: Water-in-oil-in-water (W1/O/W2) multiple emulsions with 25% and 35% solids contents were spray-dried producing microcapsules with 3.9:1, 2.6:1, and 1.4:1 biopolymers blend to primary emulsion ratios and 0.25% (w/w) theoretical carotenoids concentration. Microcapsules with better morphology, encapsulation efficiency, and larger particle size were those obtained from higher biopolymers blend to primary emulsion ratios and solids content, but showed relatively higher carotenoids degradation kinetics than microcapsules made with lower biopolymers blend to primary emulsion ratios and solids content, which exhibited poorer morphology, encapsulation efficiency, and smaller particle size. Microcapsules stored at different water activities showed maximum carotenoids degradation at a water activity (aw) of 0.628, with lower carotenoids degradation occurring at lower or higher aw. [source]


Drug release phenomena within a hydrophobic starch acetate matrix: FTIR mapping of tablets after in vitro dissolution testing

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 8 2008
Jari Pajander
Abstract The aim of this study was to assess the utility of Fourier transform infrared mapping to study the drug release phenomena within a hydrophobic matrix tablet. Starch acetate with a degree of substitution (2.7) was used as a hydrophobic matrix former. Anhydrous caffeine and riboflavin sodium phosphate were used as water soluble model drugs. The USP (XXVIII) paddle-method was selected as an in vitro dissolution test. Mapping of the diluted tablets' cross-section was performed by attenuated total reflection mode. Fourier transform infrared mapping can distinguish drug particles from the bulk matrix and it can be considered as a valuable method for obtaining both quantitative and qualitative information on drug release processes. The physicochemical properties of the drug compound strongly contribute to its release behavior when the USP paddle in vitro dissolution test is used. Mapping of the riboflavin product revealed a more homogenous matrix distribution due to its smaller particle size. Consequently, its dissolution release profile was more uniform than caffeine which possessed a wider particle size distribution and lower solubility. Mapping showed that caffeine became localized in the lower part of the tablet unlike riboflavin. The hydrodynamic conditions during the in vitro release test might contribute to this differentiation. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97: 3367,3378, 2008 [source]


Effect of surfactant on fabrication and characterization of paclitaxel-loaded polybutylcyanoacrylate nanoparticulate delivery systems

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2003
Amitava Mitra
ABSTRACT The feasibility of applying biodegradable polybutylcyanoacrylate (PBCA) nanoparticulate delivery systems (NDSs) for the controlled release of paclitaxel was investigated. Paclitaxel-loaded and unloaded PBCA-NDSs containing various surfactants (dextran 70, cholesterol, polyvinyl alcohol and lecithin) were prepared by anionic polymerization. The effects of surfactant (1% w/v), surfactant combination (1% w/v each), and surfactant concentration (0.05, 1.0 and 2.5% w/v) on PBCA-NDSs were evaluated and characterized by particle size, zeta potential, entrapment efficiency, and in-vitro paclitaxel release kinetics. The physicochemical characteristics of PBCA-NDSs incorporated with various surfactants were significantly improved compared with PBCA-NDS without any surfactant, by decreasing particle size at least 3-fold as well as by increasing the zeta potential up to 18-fold to minimize the agglomeration of nanoparticles. Moreover, PBCA-NDSs incorporated with various surfactants demonstrated higher entrapment efficiency of paclitaxel. Results from the in-vitro release kinetic studies indicated that a more controlled biphasic zero-order release pattern of paclitaxel was observed for PBCA-NDSs incorporated with various surfactants. Compared with dextran 70 and polyvinyl alcohol, the naturally occurring lipids, lecithin and cholesterol, indicated greater advantages in improving the physicochemical properties of PBCA-NDSs, in terms of smaller particle size, higher zeta potential and better drug entrapment efficiency, and better controlled release of paclitaxel, in terms of lower release rate and prolonged action from PBCA-NDSs. [source]


Microencapsulation of a functional dye and its UV crosslinking controlled releasing behavior

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 14 2009
Gangqiang Li
Abstract A new family of microcapsules containing photopolymerizable tripropylene glycol diacrylate (TPGDA) was synthesized by using interfacial polymerization. The release behavior of encapsulated dye could be controlled easily by changing the crosslink density of network formed from TPGDA. The chemical structure and properties of microcapsules were characterized by Fourier Transform infrared spectroscopy, scanning electron microscope, differential scanning calorimetry, optical microscope, wide angle X-ray diffraction and UV-visible spectrophotometer. The results demonstrate that the higher agitation rate results in a smaller particle size with a narrow size distribution. When core/shell ratio is low, the surface of the microcapsules becomes smooth. Additionally, it was found that UV radiation time is most effective factor to change the CC double bond conversion ratio. After microcapsules were synthesized, the release speed could be changed according to requirement by exposing them to UV light for minutes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3630,3639, 2009 [source]


Phases in Ceria,Zirconia Binary Oxide (1,x)CeO2,xZrO2 Nanoparticles: The Effect of Particle Size

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2006
Feng Zhang
The phases of ceria,zirconia nanoparticles observed in air are studied as a function of particle size and composition by X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. The emergence of two tetragonal phases t, and t monotonically moves toward higher zirconia concentrations with decreasing particle size. A smaller particle size increases the solubility of zirconia in cubic ceria, while higher zirconia content in ceria stabilizes against coarsening. In particular, the cubic Ce1,xZrxO2,y is persistent and is 8% in phase amount even at 90% zirconia with 33 nm crystal size. Neither the monoclinic phase m nor the tetragonal phase t, is observed in the present nanoparticles (<40 nm). The effectiveness of these nanoparticles as oxygen source-and-sink in catalytic support is largely due to the persistence of the cubic and the t, phases. [source]


Protease Immobilization on ,-Fe2O3/Fe3O4 Magnetic Nanoparticles for the Synthesis of Oligopeptides in Organic Solvents

CHEMISTRY - AN ASIAN JOURNAL, Issue 6 2010
Bao-juan Xin
Abstract The use of nanobiocatalysts, with the combination of nanotechnology and biotechnology, is considered as an exciting and rapidly emerging area. The use of iron oxide magnetic nanoparticles, as enzyme immobilization carriers, has drawn great attention because of their unique properties, such as controllable particle size, large surface area, modifiable surface, and easy recovery. In this study, various ,-Fe2O3/Fe3O4 magnetic nanoparticles with immobilized proteases were successfully prepared by three different immobilization strategies including A),direct binding, B),with thiophene as a linker, and C),with triazole as a linker. The oligopeptides syntheses catalyzed by these magnetic nanoparticles (MNPs) with immobilized proteases were systematically studied. Our results show that i),for magnetic nanoparticles immobilized ,-chymotrypsin, both immobilization strategies A and B furnished good reusability for the Z-Tyr-Gly-Gly-OEt synthesis, the MNPs enzymes can be readily used at least five times without significant loss of its catalytic performance: ii),In the case of Z-Asp-Phe-OMe synthesis catalyzed by magnetic nanoparticles immobilized thermolysin, immobilization Strategy,B provided the best recyclability: iii),For the immobilized papain, although Strategy,A or B afforded an immobilized enzyme for the first cycle of Z-Ala-Leu-NHNHPh synthesis in good yield, their subsequent catalytic activity decreased rapidly. In general, the ,-Fe2O3 MNPs were better for use as an immobilization matrix, rather than the Fe3O4 MNPs, owing to their smaller particle size and higher surface area. [source]


MEL-type Pure-Silica Zeolite Nanocrystals Prepared by an Evaporation-Assisted Two-Stage Synthesis Method as Ultra-Low- k Materials,

ADVANCED FUNCTIONAL MATERIALS, Issue 12 2008
Yan Liu
Abstract A MEL-type pure-silica zeolite (PSZ), prepared by spin-on of nanoparticle suspensions, has been shown to be a promising ultra-low-dielectric-constant (k) material because of its high mechanical strength, hydrophobicity, and chemical stability. In our previous works, a two-stage synthesis method was used to synthesize a MEL-zeolite nanoparticle suspension, in which both nanocrystal yield and particle size of the zeolite suspension increased with increasing synthesis time. For instance, at a crystal yield of 63%, the particle size is 80,nm, which has proved to be too large because it introduces a number of problems for the spin-on films, including large surface roughness, surface striations, and large mesopores. In the current study, the two-stage synthesis method is modified into an evaporation-assisted two-stage method by adding a solvent-evaporation process between the two thermal-treatment steps. The modified method can yield much smaller particle sizes (e.g., 14,vs. 80,nm) while maintaining the same nanocrystal yields as the two-stage synthesis. Furthermore, the nanoparticle suspensions from the evaporation-assisted two-stage synthesis show a bimodal particle size distribution. The primary nanoparticles are around 14,nm in size and are stable in the final suspension with 60% solvent evaporation. The factors that affect nanocrystal synthesis are discussed, including the concentration, pH value, and viscosity. Spin-on films prepared by using suspensions synthesized this way have no striations and improved elastic modulus (9.67,±,1.48,GPa vs. 7.82,±,1.30,GPa), as well as a similar k value (1.91,±,0.09 vs. 1.89,±,0.08) to the previous two-stage synthesized films. [source]


Effect of filler content and size on the properties of ethylene vinyl acetate copolymer,wood fiber composites

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2007
D. G. Dikobe
Abstract In this study, the main focus was on the effect of wood fiber (WF) content and particle size on the morphology and mechanical, thermal, and water-absorption properties of uncompatibilized and ethylene glycidyl methacrylate copolymer (EGMA) compatibilized ethylene vinyl acetate copolymer,WF composites. For uncompatibilized composites, the tensile strength decreased with increasing WF content, whereas for compatibilized composites, the tensile strength initially decreased, but it increased for composites containing more than 5% WF. Small-WF-particle-containing composites had higher tensile strengths than composites containing larger WF particles, both in the presence and absence of EGMA. WF particle size did not seem to have much influence on the degradation behavior of the composites, whereas water absorption by the composites seemed to be higher in composites with smaller particle sizes for both compatibilized and uncompatibilized composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3645,3654, 2007 [source]


A coupled DEM/CFD analysis of the effect of air on powder flow during die filling

AICHE JOURNAL, Issue 1 2009
Y. Guo
Abstract Die filling from a stationary shoe in a vacuum and in the presence of air was numerically analyzed using an Eulerian-Lagrangian model, which employs a discrete element method (DEM) for the particles and computational fluid dynamics (CFD) for the air with a two-way air-particle interaction coupling term. Monodisperse and polydisperse powder systems have been simulated to explore the effect of the presence of air on the die filling process. For die filling with monodisperse powders, the influences of particle size and density on the flow behavior were explored. The numerical simulations revealed that the presence of air has a significant impact on the powder flow behavior, especially for systems with smaller and/or lighter particles. Flow has been characterized in terms of a dimensionless mass flow rate, and it has been shown that for die filling in a vacuum this is constant. The flow characteristics for die filling in air can be classified into two regimes. There is an air-inert regime in which the particle size and density are sufficiently large that the effect of air flow becomes negligible, and the dimensionless mass flow rate is essentially identical to that obtained for die filling in a vacuum. There is also an air-sensitive regime, for smaller particle sizes and lower particle densities, in which the dimensionless mass flow rate increases as the particle size and density increase. The effects of particle-size distribution and adhesion on the flow behavior have also been investigated. It was found that, in a vacuum, the dimensionless mass flow rate for polydisperse systems is nearly identical to that for monodisperse systems. In the presence of air, a lower dimensionless mass flow rate is obtained for polydisperse systems compared to monodisperse systems, demonstrating that air effects become more significant. Furthermore, it has been shown that, as expected, the dimensionless mass flow rate decreases as the surface energy increases (i.e., for more cohesive powders). © 2008 American Institute of Chemical Engineers AIChE J, 2009 [source]


Gelatin Microspheres as a Pulmonary Delivery System: Evaluation of Salmon Calcitonin Absorption

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 6 2000
KAZUHIRO MORIMOTO
The use of negatively and positively charged gelatin microspheres for pulmonary delivery of salmon calcitonin was examined in rats. The microspheres were prepared using acidic gelatin (isoelectric point (IEP):, 5.0) and basic gelatin (IEP, 9.0) for the negatively and positively charged microspheres, respectively. The average diameters of positively charged gelatin microspheres in the dry state were 3.4, 11.2, 22.5 and 71.5 ,m, and that of negatively charged gelatin microspheres was 10.9 ,m. Neither positively nor negatively charged gelatin microspheres underwent any degradation in pH 7.0 PBS and there was less than 8% degradation in bronchoalveolar lavage fluid (BALF) after 8 h. In in-vitro release studies in pH 7.0 PBS, salmon calcitonin was rapidly released from positively charged gelatin microspheres within 2 h, and its cumulative release was approximately 85%. In addition, the release profiles were not influenced by particle sizes. The release rates of salmon calcitonin from negatively charged gelatin microspheres were lower than that from positively charged gelatin microspheres. The cumulative release was approximately 40% after 2 h, but there was no evidence of any sustained release. The pulmonary absorption of salmon calcitonin from gelatin microspheres was estimated by measuring its hypocalcaemic effect in rats. The pharmacological availability after administration of salmon calcitonin in positively and negatively charged gelatin microspheres was significantly higher than that in pH 7.0 PBS. The pharmacological availability after administration of salmon calcitonin in positively charged gelatin microspheres was significantly higher than that in negatively charged gelatin microspheres. Administration of salmon calcitonin in positively charged gelatin microspheres with smaller particle sizes led to a higher pharmacological availability. The pharmacological availability after pulmonary administration of salmon calcitonin in positively charged gelatin microspheres with particle sizes of 3.4 and 11.2 ,m was approximately 50%. In conclusion, the gelatin microspheres have been shown to be a useful vehicle for pulmonary delivery of salmon calcitonin. [source]


Crystallization behavior and mechanical properties of polypropylene/modified carbon black composites

POLYMER COMPOSITES, Issue 4 2009
Ping Zhu
Carbon black (CB) modified with small organic molecules was filled in polypropylene (PP) matrix. The crystallization behavior and mechanical properties of PP/modified CB (MCB) composites were investigated. Compared with the original CB, MCB could be dispersed uniformly in smaller particle sizes in PP matrix, and MCB could act as a more effective nucleating, toughening, and reinforcing agent when it was filled in PP at low concentrations. Further increasing of MCB particles in PP matrix resulted in the decrease of impact and tensile strength of PP/MCB composites. It was inferred from DSC results that the existence of CB vand MCB in PP matrix could result in the decrease of crystallite size and degree of perfection of PP. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source]