Home About us Contact | |||
Small Worlds (small + world)
Selected AbstractsBeyond a "Small World", Real Life: Multi-Faceted Phenomenon of Research in Business SchoolsCANADIAN JOURNAL OF ADMINISTRATIVE SCIENCES, Issue 3 2002Richard Déry First page of article [source] Small worlds: Normative behavior in virtual communities and feminist booksellingJOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, Issue 7 2001Gary Burnett [source] The navigability of strong ties: Small worlds, tie strength, and network topologyCOMPLEXITY, Issue 1 2002Douglas R. White First page of article [source] Centrality Based Visualization of Small World GraphsCOMPUTER GRAPHICS FORUM, Issue 3 2008F. Van Ham Abstract Current graph drawing algorithms enable the creation of two dimensional node-link diagrams of huge graphs. However, for graphs with low diameter (of which "small world" graphs are a subset) these techniques begin to break down visually even when the graph has only a few hundred nodes. Typical algorithms produce images where nodes clump together in the center of the screen, making it hard to discern structure and follow paths. This paper describes a solution to this problem, which uses a global edge metric to determine a subset of edges that capture the graph's intrinsic clustering structure. This structure is then used to create an embedding of the graph, after which the remaining edges are added back in. We demonstrate applications of this technique to a number of real world examples. [source] Song: The genome song (to the tune of "it's a small world")BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, Issue 2 2006Scott F. Gilbert No abstract is available for this article. [source] Mapping the forms of meaning in small worldsINTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, Issue 7 2008Bruno Gaume Prox is a stochastic method to map the local and global structures of real-world complex networks, which are called small worlds. Prox transforms a graph into a Markov chain; the states of which are the nodes of the graph in question. Particles wander from one node to another within the graph by following the graph's edges. It is the dynamics of the particles' trajectories that map the structural properties of the graphs that are studied. Concrete examples are presented in a graph of synonyms to illustrate this approach. © 2008 Wiley Periodicals, Inc. [source] The Small World of Canadian Capital Markets: Statistical Mechanics of Investment Bank Syndicate Networks, 1952,1989CANADIAN JOURNAL OF ADMINISTRATIVE SCIENCES, Issue 4 2004Joel A.C. Baum We investigate the structure of investment bank syndicate networks in Canada. We consider two banks to be connected if they have participated in an underwriting syndicate together, and construct networks of such connections using data drawn from the Record of New Issues (Financial Data Group). We show that these interfirm networks form "small worlds", in which banks are both locally clustered and globally connected by short paths of intermediate banks, and are "scale free", in which the connectivity of the network is highly skewed and with most banks tied to a small set of prominent banks. We examine changes over time in the network's small-world and scale-free properties, and demonstrate their theoretical and practical implications for the structure and operation of Canadian capital markets by linking these properties to the network's cliquey-ness, resilience, and speed of information transmission. Résumé Cette étude porte sur la structure des réseaux que for-ment les syndicats d'émission des banques d'investissement au Canada. Nous posons que deux banques sont liées si elles ont participé ensemble à un syndicat d'émission, et nous retraçons les réseaux de liens en utilisant des données extraites du Record of New Issues (Financial Data Group). Nous montrons que ces réseaux interorganisationnels (RIO)forment des petits mondes dans lesquels les banques sont à la fois localement regroupées et mondialement reliées par des courts chemins de banques intermédiaires. Les RIO sont également sans échelle (scale free): la connectivité dans le réseau est fortement inégale et la plupart des banques sont liées à un petit nombre de banques dominantes. Nous examinons l'évolution des propriétés de petit monde et d'absence d'échelle du réseau et mettons en Evidence leurs implications théoriques et pratiques pour la structure et le fonctionnement du marché canadien des capitaux en reliant ces propriétés aux caractères de clique, de résilience et de vitesse de transmission de l'information du réseau. [source] |