Small Streams (small + stream)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Nutrient Uptake in a Large Urban River,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2007
Catherine A. Gibson
Abstract:, Small streams have been shown to be efficient in retaining nutrients and regulating downstream nutrient fluxes, but less is known about nutrient retention in larger rivers. We quantified nutrient uptake length and uptake velocity in a regulated urban river to determine the river's ability to retain nutrients associated with wastewater treatment plant (WWTP) effluent. We measured net uptake of soluble reactive phosphorus (SRP), dissolved organic phosphorus, ammonium (NH4), nitrate, and dissolved organic nitrogen in the Chattahoochee River, Atlanta, GA by following the downstream decline of nutrients and fluoride from WWTP effluent on 10 dates under low flow conditions. Uptake of all nutrients was sporadic. On many dates, there was no evidence of measurable nutrient uptake lengths within the reach; indeed, on several dates release of inorganic N and P within the sample reach led to increased nutrient export downstream. When uptake occurred, SRP uptake length was negatively correlated with total suspended solids and temperature. Uptake velocities of SRP and NH4 in the Chattahoochee River were lower than velocities in less-modified systems, but they were similar to those measured in other WWTP impacted systems. Lower uptake velocities indicate a diminished capacity for nutrient uptake. [source]


Metal toxicity inferred from algal population density, heterotrophic substrate use, and fatty acid profile in a small stream

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2000
Robert B. Genter
Abstract The purpose of this study was to examine relations between metal concentrations in periphyton and the abundance of algal species, heterotrophic use of 95 carbon sources, and phospholipid fatty acids (PLFA) of the periphyton in a small stream spanning a mine in Lemhi County, Idaho, USA. Two upstream, two mine, and two downstream sites were examined. Elevated concentrations of As and Cu at the mine sites were associated with communities that were depleted of diatoms and filamentous blue-green algae and characterized by a low-diversity community dominated by a single blue-green alga and patchy populations of the diatom Achnanthidium minutissimum and a filamentous green alga. Carbon source use and PLFA profiles provided a rapid assessment of stream conditions that were consistent with algal taxonomy and with our hypotheses constructed from previous reports on periphyton responses to metal stress. [source]


The use of fyke nets as a quantitative capture technique for freshwater eels (Anguilla spp.) in rivers

FISHERIES MANAGEMENT & ECOLOGY, Issue 4 2005
D. J. JELLYMAN
Abstract, Fyke netting is a convenient and effective technique for capturing freshwater eels, and catch-per-unit-effort is usually assumed to be an index of eel abundance. The present study investigated the potential of depletion fishing using baited fyke nets to obtain population estimates of longfin eels Anguilla dieffenbachii Gray, in a river in the South Island of New Zealand. The probability of capture (capture efficiency) of a single night's fishing increased with increasing size of eel, and ranged from 0.2 to 0.9 for eels <400 mm, to 0.7,0.9 for eels ,500 mm. The capture efficiency of baited vs unbaited nets was assessed in a small stream that was electric fished after netting trials were completed. Baited nets proved to be an effective method of assessing abundance of longfin eels (>400 mm) but not shortfins (A. australis Richardson); capture efficiency of the population of longfins (the sum of fyke caught and electric fished eels) was 0.4 for a single night's fyke netting, increasing to 0.8 over four nights. Comparable efficiencies for shortfins were <0.1 and 0.3 respectively. Unbaited nets were markedly less efficient for both species. [source]


Characteristics and rehabilitation of the spawning habitats of the sea trout, Salmo trutta, in Gotland (Sweden)

FISHERIES MANAGEMENT & ECOLOGY, Issue 1 2004
J.-F. Rubin
Abstract Characteristics of the natural spawning habitat of sea trout, Salmo trutta L., were studied in Själsöån, a small stream of Gotland, Sweden, from 1992 to 1999. Each year, trout spawned on 17 ± 7 different areas (156 places ha,1). Most of the spawning grounds were used every year. Overcutting was evident for at least 60% of the spawning grounds. Fish spawned on a gravel of 19 ± 7 mm in diameter. From 1978 to 1992, 242 artificial spawning grounds were constructed by the Gotland Sport Fishermen Association in four Gotland streams. A sediment trap was dug upstream to the spawning grounds. The artificial spawning ground comprised of a downstream V-shape stream deflector of large stones with a log weir at the narrowest point of the deflector. Upstream of the dam, 15,60 mm diameter gravel was deposited to constitute the spawning ground substratum. To keep the installation efficient, maintenance is needed every year before the spawning season. [source]


The effects of low summer flow on wild salmon (Salmo salar), trout (Salmo trutta) and grayling (Thymallus thymallus) in a small stream

FRESHWATER BIOLOGY, Issue 12 2009
W. D. RILEY
Summary 1.,The effects of an experimentally imposed low summer flow on habitat use, displacement and survival of wild populations of juvenile salmon (Salmo salar), trout (Salmo trutta) and grayling (Thymallus thymallus) were investigated in a chalk stream. The habitat use and mobility of the fish in response to reduced flow was determined using passive integrated transponder-tag detector systems. 2.,Habitat use was compared to that available under different flow regimes. These consisted of an initial control phase of normal summer flow, an abrupt step change to 21 days of low flow, followed by a second control phase when normal summer flow was reinstated. First year (0+) salmon showed little change in their preferred substratum during low flow, whilst 1+ salmon increased their use of gravel and reduced that of mud during the day. Both 0+ and 1+ salmon were found in relatively deep water by day under low flow, whilst 1+ salmon preferred relatively shallow water at night. First year trout increased their use of gravel and reduced their use of mud and submerged tree roots under low flow, using relatively deep and fast flowing water by day. Older trout increased their use of gravel and occupied relatively deep, slow flowing water by day and relatively fast and shallow water at night. Grayling showed little change in their preferred substratum, but occupied relatively shallow water following the introduction of low flow. 3.,The range of movement of juvenile salmon increased at night under low flow, and was greater by day under normal flow. There was also an initial increase in the range of movement of 0+ trout following the introduction of low flow. Older trout initially moved less under low flow. With reduced flow, the range of movement by grayling increased significantly during the day. 4.,There was no net downstream displacement of any species with reduced flow, but the mortality rate in 0+ salmon, trout and grayling increased. This may be related to their small size and increased vulnerability to predation under low flow, and due to the reduction in depth and loss of the stream margins that are normally the preferred habitat of 0+ trout and grayling. 5.,The findings of this field study have implications for the management of braided, and highly regulated, chalk stream systems. In particular, they underline the importance of the stream margins as juvenile salmonid habitat, and suggest that a flow management strategy is required to mitigate for drought conditions. Such a strategy might include pre-emptive controls on abstraction and the maintenance of river flow via a prioritised route, predetermined using fish or habitat surveys, to minimise the effects of drought conditions on the more vulnerable or valued fish groups. [source]


Ontogenetic changes in the drifting of four species of elmid beetles elucidate the complexity of drift-benthos relationships in a small stream in Northwest England

FRESHWATER BIOLOGY, Issue 1 2008
J. M. ELLIOTT
Summary 1. This study aimed to quantify ontogenetic changes in the drifting of Elmis aenea, Oulimnius tuberculatus, Esolus parallelepipedus and Limnius volkmari (Coleoptera: Elmidae), and to relate their drift to benthic density. Monthly samples were taken over 39 months, using three surface nets at each of two contrasting sites in a small stream: one in a deep section with abundant macrophytes, and the other in a shallow stony section. 2. Most larvae and adults were taken in the drift at night with little variation between catches in the three nets at each site. Day catches were very low, often zero. No significant relationships could be established between mean numbers in the drift catches and benthic densities. 3. When night catches were converted to drift densities (number caught per 100 m3 of water sampled), the latter were positively related to monthly losses in the benthos, but not to benthic densities. A linear regression described the relationship, and equations for the different life-stages within each species were not significantly different from the equation for all life-stages combined. However, drift losses were only about 0.07% of total losses in the benthos. A severe spate in October 1967 increased the number of larvae and adults in the drift, but not drift densities, except for immature adults of E. aenea, O. tuberculatus and E. parallelepipedus. 4. Key life-stages with the highest drift density were the earliest life-stage soon after egg hatching for E. aenea, the start of the larval overwintering period for O. tuberculatus and L. volkmari, and mature adults during the mating season for all three species. Drift density for E. parallelepipedus was too low to identify a key life-stage. These key life-stages corresponded with critical periods for survival in the life cycle, as identified in an earlier study in the same stream. Mortality was high during these critical periods, hence the strong relationship between drift density and benthic losses. The latter relationship was very consistent for different life-stages within each species, and partially supported the rarely-tested hypothesis that drift represents surplus production in the benthos. [source]


Stream temperature and the potential growth and survival of juvenile Oncorhynchus mykiss in a southern California creek

FRESHWATER BIOLOGY, Issue 7 2007
DAVID A. BOUGHTON
Summary 1.,We asked whether an increase in food supply in the field would increase the ability of fish populations to withstand climate warming, as predicted by certain bioenergetic models and aquarium experiments. 2.,We subsidised the in situ food supply of wild juvenile steelhead (Oncorhynchus mykiss) in a small stream near the species' southern limit. High-quality food (10% of fish biomass per day) was added to the drift in eight in-stream enclosures along a naturally-occurring thermal gradient. 3.,The temperatures during the experiment were well below the upper thermal limit for the species (means of enclosures ranged from 15.1 to 16.5 °C). Food supplements had no discernible effect on survival, but raised mean (± SD) specific growth rate substantially, from 0.038 ± 0.135 in controls to 2.28 ± 0.51 in feeding treatments. Food supplements doubled the variation in growth among fish. 4.,The mean and variance of water temperature were correlated across the enclosures, and were therefore transformed into principal component scores T1 (which expressed the stream-wide correlation pattern) and T2 (which expressed local departures from the pattern). Even though T1 accounted for 96% of the variation in temperature mean and variance, it was not a significant predictor of fish growth. T2 was a significant predictor of growth. The predicted time to double body mass in an enclosure with a large T2 score (cool-variable) was half that in an enclosure with a low T2 score (warm-stable). 5.,Contrary to expectation, temperature effects were neutral, at least with respect to the main axis of variation among enclosures (cool-stable versus warm-variable). Along the orthogonal axis (cool-variable versus warm-stable), the effect was opposite from expectations, probably because of temperature variation. Subtle patterns of temperature heterogeneity in streams can be important to potential growth of O. mykiss. [source]


Critical periods in the life cycle and the effects of a severe spate vary markedly between four species of elmid beetles in a small stream

FRESHWATER BIOLOGY, Issue 8 2006
J. M. ELLIOTT
Summary 1. The chief objectives were: (i) to describe quantitatively the life cycles of four species of Elmidae, Elmis aenea, Esolus parallelepipedus, Oulimnius tuberculatus and Limnius volkmari; (ii) to use life tables to identify critical periods for survival in the life cycle of each species; (iii) to evaluate the immediate and longer-term effects of a severe spate on densities of the four species. Monthly samples were taken over 63 months at two contrasting sites in a small stream: one in a deep section with macrophytes abundant, and the other in a shallow stony section. 2. There were five larval instars for O. tuberculatus, seven for L. volkmari and six for the other two species. The life cycle of each species took 1 year from egg hatching (chiefly in June for E. aenea and O. tuberculatus, and July for the other species) to pupation in the stream bank and a further year before the adults in the stream matured and laid their eggs. Mature adults were present in most months, but were rare or absent in January and February and attained maximum densities in April for O. tuberculatus and May for the other species. 3. Laboratory experiments provided data on egg hatching and pupation periods and the number of eggs laid per female. Life tables compared maximum numbers per square metre for key life-stages. Within each species, mortality rates between adjacent life-stages were fairly constant among six cohorts and between sites, in spite of large differences in numbers. The only exception for all species was the high adult, but not larval, mortality during a severe spate. 4. Standardised life tables, starting with 1000 eggs, identified key life-stages with the highest mortality, namely the early life-stages for E. aenea (36% mortality), start of the overwintering period to pupation for O. tuberculatus (41%) and L. volkmari (51%), start of pupation to the maximum number of immature adults for E. parallelepipedus (41%) and between the maximum numbers of immature and mature adults for O. tuberculatus (41%). Therefore, critical periods for survival in the life cycle differed between species, presumably because of their different ecological requirements. Similarly, the effects of the spate on adult mortality, and hence egg production, varied between species, being most severe and long-term for E. aenea and O. tuberculatus, less severe for E. parallelepipedus and least severe with a rapid recovery for L. volkmari. Possible reasons for these discrepancies are discussed, but more data are required on the food and microhabitat requirements of the elmids before satisfactory explanations can be found. [source]


Water quality and Cryptosporidium distribution in an upland water supply catchment, Cumbria, UK

HYDROLOGICAL PROCESSES, Issue 7 2007
A. Sturdee
Abstract Four micro-catchment (MC) areas were identified to represent the main terrain types of a remote, sparsely populated upland valley catchment of 18 km2 in Cumbria, UK. These were improved land with good grazing (IB), steeply sloping land with rough grazing (SG), wet moorland with sparse grazing (WM) and enclosed woodland that excluded livestock and deer (EW). Each MC contained the origin of a small stream that flowed into Swindale Beck, the river draining the valley. The water quality during the 14-month study, as judged by chemical and physical parameters, was excellent, but it could not be regarded as pristine because of the frequent presence of Cryptosporidium oocysts arising from livestock and wild mammal faeces. Oocysts (0·2,5·6 l,1) detected by genus-specific immunofluorescent antibody were found in 32% of 188 water samples tested: ranking order EW 44%, IB 34%, Beck 30%, SG and WM 26%. Similarly, oocysts were identified in 9·5% of 1730 faecal samples. Small wild mammals (28%), calves (15·7%) and lambs (8·1%) were the dominant sources, whereas adult livestock (1·8%) and large wild mammals (4·8%) were less important. Autumn showed the highest occurrence of oocysts for both water and faecal samples. No hydrological controls were found to have a significant impact on the occurrence or concentration of oocysts in the main river or in the MCs, suggesting that their presence is controlled by seasonal changes in pathogen prevalence in the animal reservoir. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Soil frost effects on soil water and runoff dynamics along a boreal forest transect: 1.

HYDROLOGICAL PROCESSES, Issue 6 2001
Field investigations
Abstract To determine how soil frost changes flowpaths of runoff water along a hillslope, a transect consisting of four soil profiles directed towards a small stream in a mature forest stand was investigated at Svartberget, near Vindeln in northern Sweden. Soil temperature, unfrozen water content, groundwater level and snow depth were investigated along the transect, which started at the riparian peat, and extended 30 m upslope into mineral soils. The two, more organic-rich profiles closest to the stream had higher water retention and wetter autumn conditions than the sandy mineral soils further upslope. The organic content of the soil influenced the variation in frost along the transect. The first winter (1995,96) had abnormally low snow precipitation, which gave a deep frost down to 40,80 cm, whereas the two following winters had frost depths of 5,20 cm. During winter 1995,96, the two organic profiles close to the stream had a shallower frost depth than the mineral soil profile higher upslope, but a considerably larger amount of frozen water. The fraction of water that did not freeze despite several minus degrees in the soil was 5,7 vol.% in the mineral soil and 10,15 vol.% in the organic soil. From the measurements there were no signs of perched water tables during any of the three snowmelt periods, which would have been strong evidence for changed water flowpaths due to soil frost. When shallow soil layers became saturated during snowmelt, especially in 1997 and 1998, it was because of rising groundwater levels. Several rain on frozen ground events during spring 1996 resulted in little runoff, since most of the rain either froze in the soil or filled up the soil water storage. Copyright © 2001 John Wiley & Sons, Ltd. [source]


DOC Release from Alder Leaves and Catkins during Decomposition in a Small Lowland Stream

INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 1 2005
árka Axmanová
Abstract Alder leaves and catkins were placed in a small stream, then retrieved in weekly intervals, and rates of release of dissolved organic carbon (DOC) and substantial DOC characteristics were determined. Decomposition rates of leaves and catkins were 0.026 d,1 and 0.011 d,1 on the streambed, and 0.017 d,1 and 0.009 d,1 in the sediments, respectively, during 5 weeks of decomposition. The rate of DOC release from leaves declined from 18.0% d,1 to 0.7% d,1, and had a higher proportion of low molecular weight compounds, more saturated and contained larger humic molecules than DOC from catkins, which rate of release declined from 10.6% d,1 to 0.1% d,1. In initial stages of the decomposition, leaf material produced more biodegradable DOC (BDOC) than catkins. During the period of low leaf litter input, DOC released from catkins can become an important instream source of labile DOC. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Density-dependent growth rate in an age-structured population: a field study on stream-dwelling brown trout Salmo trutta

JOURNAL OF FISH BIOLOGY, Issue 10 2009
R. Kaspersson
A field experiment during autumn, winter and spring was performed in a small stream on the west coast of Sweden, aiming to examine the direct and indirect consequences of density-dependent intercohort competition in brown trout Salmo trutta. Individual growth rate, recapture rate and site fidelity were used as response variables in the young-of-the-year (YOY) age class, experiencing two different treatments: presence or absence of yearlings and over-yearlings (age , 1+ year individuals). YOY individuals in stream sections with reduced density of age , 1+ year individuals grew significantly faster than individuals experiencing natural cohort structure. In the latter, growth rate was negatively correlated with density and biomass of age , 1+ year individuals, which may induce indirect effects on year-class strength through, for example, reduced fecundity and survival. Movement of YOY individuals and turnover rate (i.e. proportion of untagged individuals) were used to demonstrate potential effects of intercohort competition on site fidelity. While YOY movement was remarkably restricted (83% recaptured within 50 m from the release points), turnover rate was higher in sections with reduced density of age ,1+ year individuals, suggesting that reduced density of age ,1+ year individuals may have released favourable microhabitats. [source]


Growth rate differences between resident native brook trout and non-native brown trout

JOURNAL OF FISH BIOLOGY, Issue 5 2007
S. M. Carlson
Between species and across season variation in growth was examined by tagging and recapturing individual brook trout Salvelinus fontinalis and brown trout Salmo trutta across seasons in a small stream (West Brook, Massachusetts, U.S.A.). Detailed information on body size and growth are presented to (1) test whether the two species differed in growth within seasons and (2) characterize the seasonal growth patterns for two age classes of each species. Growth differed between species in nearly half of the season- and age-specific comparisons. When growth differed, non-native brown trout grew faster than native brook trout in all but one comparison. Moreover, species differences were most pronounced when overall growth was high during the spring and early summer. These growth differences resulted in size asymmetries that were sustained over the duration of the study. A literature survey also indicated that non-native salmonids typically grow faster than native salmonids when the two occur in sympatry. Taken together, these results suggest that differences in growth are not uncommon for coexisting native and non-native salmonids. [source]


MODELING THE LONG TERM IMPACTS OF USING RIGID STRUCTURES IN STREAM CHANNEL RESTORATION1

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2006
Sue L. Niezgoda
Abstract: Natural channel designs often incorporate rigid instream structures to protect channel banks, provide grade control, promote flow deflection, or otherwise improve channel stability. The long term impact of rigid structures on natural stream processes is relatively unknown. The objective of this study was to use long term alluvial channel modeling to evaluate the effect of rigid structures on channel processes and assess current and future stream channel stability. The study was conducted on Oliver Run, a small stream in Pennsylvania relocated due to highway construction. Field data were collected for one year along the 107 m reach to characterize the stream and provide model input, calibration, and verification data. FLUVIAL-12 was used to evaluate the long term impacts of rigid structures on natural channel adjustment, overall channel stability, and changing form and processes. Based on a consideration of model limitations and results, it was concluded that the presence of rigid structures reduced channel width-to-depth ratios, minimized bed elevation changes due to long term aggradation and degradation, limited lateral channel migration, and increased the mean bed material particle size throughout the reach. Results also showed how alluvial channel modeling can be used to improve the stream restoration design effort. [source]


Effects of Habitat Disturbance on Stream Salamanders: Implications for Buffer Zones and Watershed Management

CONSERVATION BIOLOGY, Issue 3 2003
John D. Willson
To minimize the impacts of development on aquatic habitats, numerous conservation measures have been implemented, including the use of riparian buffer zones along streams and rivers. We examined the effectiveness of current buffer-zone systems for management of small watersheds in conserving stream-dwelling salamander populations in 10 small streams ( draining <40.5 ha ) in the western Piedmont of North Carolina. We captured salamanders by means of funnel traps and systematic dipnetting and used a geographic information system to calculate the percentage of disturbed habitat within the watershed of each stream and within 10.7-, 30.5-, and 61.0 -m buffer zones around each stream, upstream from our sampling locations. Although the relative abundance of salamanders was strongly inversely proportional to the percentage of disturbed habitat in the entire watersheds ( R2 = 0.71 for Desmognathus fuscus and 0.48 for Eurycea cirrigera ), we found little to no correlation between the relative abundance of salamanders and the percentage of disturbed habitat present within buffer zones ( R2 = 0.06,0.27 for D. fuscus and 0.01,0.07 for E. cirrigera ). Thus, conservation efforts aimed at preserving salamander populations in headwater streams must consider land use throughout entire watersheds, rather than just preserving small riparian buffer zones. Resumen: La destrucción y degradación del hábitat se encuentra entre la mayores amenazas a la vida silvestre, junto con el aumento global de la población humana. Para minimizar los impactos del desarrollo sobre hábitats acuáticos, se han instrumentado numerosas medidas de conservación, incluyendo el uso de zonas de amortiguamiento riparias a lo largo de arroyos y ríos. Examinamos la efectividad de los actuales sistemas de zonas de amortiguamiento usados en el manejo de cuencas pequeñas para la conservación de poblaciones de salamandras de arroyo en 10 arroyos pequeños ( que drenan <40.5 ha ) al pie de monte del occidente de Carolina del Norte. Capturamos salamandras con trampas de embudo y mediante el uso sistemático de redes y utilizamos un sistema de información geográfica para calcular el porcentaje de hábitat perturbado dentro de la cuenca de cada arroyo y dentro de zonas de amortiguamiento de 10.7-, 30.5- y 61.0-m alrededor de cada arroyo, río arriba de nuestros sitios de muestreo. Aunque los valores de abundancia relativa de salamandras fueron inversamente proporcionales al porcentaje de hábitat perturbado en el total de las cuencas ( R2 = 0.71 para Desmognathus fuscus y 0.48 para Eurycea cirrigera ), encontramos una correlación débil o inexistente entre las abundancias relativas de salamandras y el porcentaje de hábitat perturbado en las zonas de amortiguamiento R2 = 0.06,0.27 para D. fuscus y 0.01,0.07 para E. cirrigera ). Por lo tanto, los esfuerzos de conservación dirigidos a preservar poblaciones de salamandras de arroyos de cabecera deben tomar en cuenta el uso de la tierra en la superficie entera de las cuencas, en lugar de preservar pequeñas zonas de amortiguamiento riparias. [source]


BIODIVERSITY RESEARCH: Population expansion in an invasive grass, Microstegium vimineum: a test of the channelled diffusion model

DIVERSITY AND DISTRIBUTIONS, Issue 5 2010
Nathaniel P. Miller
Abstract Aim, The greatest biodiversity impact of non-native plant species is caused by rapid expansion of colonist populations. Unfortunately, invasion has rarely been documented in real time at a population scale, and demographic mechanisms of invasion remain unclear. Our goal is to describe real-time expansion of populations, using channelled diffusion as a null model. Location, The study examined three populations of the invasive annual grass Microstegium vimineum in mature second-growth forests of south-eastern Ohio and nearby West Virginia, USA. Methods, Distributions were recorded in belt transects perpendicular to population edges over a period of 3 years. A second group of belt transects documented spread along five types of potential movement corridor. Observed changes in distribution were compared with predictions from a diffusion model. A seed-sowing experiment tested seed availability, microsite quality and proximity to potential movement corridors as factors controlling population spread. Results, Population boundaries showed little change over the study period. Colonization was limited by propagule availability over distances as little as 0.25 m, and to a lesser extent by litter cover. Populations did not advance along several potential movement corridors including unpaved roads, off-road vehicle trails and footpaths. Advance was observed along deer trails and stream courses but did not conform to the wave-form distribution predicted by diffusion theory. During the study, seeds were moved out of experimental plots by sheet flow and minor flooding events along small streams. Main conclusion, At a population level, invasion is driven by processes that are episodic in time and non-random in space , probably a common condition in non-native plant species. Spatially realistic models are likely to be more useful than diffusive models in managing invasions at these scales. [source]


Tooth size and skin thickness in mature sockeye salmon: evidence for habitat constraints and variable investment between the sexes

ECOLOGY OF FRESHWATER FISH, Issue 3 2006
S. P. Johnson
Abstract ,, Pacific salmon develop many sexually dimorphic features at maturity, and the extent of development varies among populations. In this study, we compared a suite of traits including body length, body depth, jaw length, tooth size and skin mass in male and female sockeye salmon breeding in beach and creek habitats. Both tooth size and skin mass varied positively with body length. Within each of the breeding habitats, males had longer teeth than females, and within each sex, beach spawners had longer teeth than creek spawners. Males also had heavier skin than females in each habitat but, unlike the case with tooth size, creek spawners showed a much stronger relationship between skin mass and body length than did beach spawners. Tooth length was positively related to jaw length and skin mass among individuals within a given sex and habitat. Taken together, these results suggested that variation in tooth size parallels variation in other sexually dimorphic traits. Males and beach spawners tend to exhibit large trait values relative to females and creek spawners, and ,well-endowed' individuals displayed high values of all traits rather than a trade-off as might occur if investment in one trait compromised investment in others. However, the finding that creek fish tended to have thicker skin for a given body length than did beach fish suggested that factors other than merely defense against conspecifics during battle, such as abrasion and desiccation resistance in small streams, may influence the evolution of skin mass in mature sockeye salmon. [source]


Population genetics of the European trout (Salmo trutta L.) migration system in the river Rhine: recolonisation by sea trout

ECOLOGY OF FRESHWATER FISH, Issue 1 2005
A. Schreiber
Abstract , Allozyme genetics (34 loci) is studied in up to 1010 European trout (Salmo trutta) from the Rhine, Meuse, Weser, Elbe and Danube river systems in Central Europe. Population samples from single collection sites, chiefly small streams (GCG = 0.2126), rather than the divergence of the trout from Atlantic and Danubian drainages (GSG = 0.0711), contributed to the overall gene diversity of GST = 0.2824. Sea trout (n = 164) and brown trout (n = 767) in Atlantic rivers adhere to the same biogeographical stock, but anadromous trout from the Rhine and the Elbe display more genetic cohesion than resident brown trout from the Rhine system alone. Strayers from the Elbe could have founded the recently re-established sea trout population of the Rhine, after a few decades of absence or precarious rarity. Migrants may even connect the Rhine and Elbe stocks by ongoing gene flow. A release,recapture study confirms that all trout in the Rhine belong to one partly migratory population network: Six of 2400 juvenile sea trout released into a tributary of the Rhine were later recorded as emigrants to the Rhine delta, against three of 1600 released brown trout. One migrant had entered the open North Sea, but the other dispersers were recorded in fresh waters of the Rhine delta (Ijsselmeer, Amstelmeer). Stocking presumably elevated both heterozygosity and fixation indices of brown trout, but this effect is subtle within the range of the Atlantic population group. Improved sea trout management in the Rhine, and modifications to brown trout stocking in the upper Danubian area are recommended. [source]


Brook trout, Salvelinus fontinalis, microhabitat selection and diet under low summer stream flows

FISHERIES MANAGEMENT & ECOLOGY, Issue 3 2006
J. C. SOTIROPOULOS
Abstract, This study investigated the effects of low summer discharge on habitat, prey use and prey availability for age 1 brook trout, Salvelinus fontinalis (Mitchill), in two small streams in Massachusetts, USA. Stream discharge declined substantially from June to August, with corresponding decreases in microhabitat depth and velocity; but fish habitat preferences were consistent throughout the summer, with fish selecting deep, low current velocity locations. Invertebrate drift rate, drift density and trout stomach fullness were significantly greater in June than August samples. Diets were dominated by aquatic-derived prey (chironomid larvae and adult blackflies) in June, but terrestrial invertebrates were the most frequent diet items in August. Consistent occupancy of low-velocity, deep microhabitats with low invertebrate flux rates indicated that, despite variation in habitat and prey conditions, trout adopted a habitat-use strategy of minimising risks and energy costs rather than maximising forage gain. This observation is consistent with, and provides a potential explanation for, the low summer growth rates of brook trout observed in small streams. [source]


Similar breakdown rates and benthic macroinvertebrate assemblages on native and Eucalyptus globulus leaf litter in Californian streams

FRESHWATER BIOLOGY, Issue 4 2010
IGOR LA
Summary 1.,Eucalyptus globulus, a tree species planted worldwide in many riparian zones, has been reported to affect benthic macroinvertebrates negatively. Although there is no consensus about the effects of Eucalyptus on aquatic macrobenthos, its removal is sometimes proposed as a means of ecological restoration. 2.,We combined the sampling of macroinvertebrates with measurement of the colonisation of leaf packs in mesh bags, to examine the effects of riparian Eucalyptus and its litter on benthic macroinvertebrates in three small streams in California, U.S.A. Each stream included one reach bordered by Eucalyptus (E-site) and a second bordered by native vegetation (N-site). 3.,The macrobenthos was sampled and two sets of litter bags were deployed at each site: one set with Eucalyptus litter (Euc-bags) and one with mixed native tree litter (Nat-bags) containing Quercus, Umbellularia, Acer and Alnus. Bags were exposed for 28, 56 and 90 days and this experiment was repeated in the autumn, winter and spring to account for effects of changing stream flow and insect phenology. 4.,Litter input (average dry mass: 950 g m,2 year,1 in E-sites versus 669 g m,2 year,1 in N-sites) was similar, although in-stream litter composition differed between E- and N-sites. Litter broke down at similar rates in Euc-bags and Nat-bags (0.0193 day,1 versus 0.0134 day,1), perhaps reflecting the refractory nature of some of the leaves of the native trees (Quercus agrifolia). 5.,Summary metrics for macroinvertebrates (taxon richness, Shannon diversity, pollution tolerance index) did not differ significantly between the E and N sites, or between Euc-bags and Nat-bags. No effect of exposure time or site was detected by ordination of the taxa sampled. However, distinct seasonal ordination clusters were observed in winter, spring and autumn, and one of the three streams formed a separate cluster. 6.,The presence of Eucalyptus was less important in explaining the taxonomic composition of the macrobenthos than either ,season' or ,stream'. Similarly, these same two factors (but not litter species) also helped explain the variation in leaf breakdown. We conclude that patches of riparian Eucalyptus and its litter have little effect on stream macrobenthos in this region. [source]


Transport and settlement of organic matter in small streams

FRESHWATER BIOLOGY, Issue 2 2010
TRENT M. HOOVER
Summary 1.,After it enters streams, terrestrially derived organic matter (OM) rapidly absorbs water. Using field and laboratory experiments, we examined how this process affected the buoyancy, settling velocity, transport distance and retention locations of four types of organic matter typically found in Pacific coastal streams (,flexible' red alder leaves and three ,stiff' particle types , Douglas-fir needles, red cedar fronds and Douglas-fir branch pieces). 2.,Immersion in water rapidly changed the physical characteristics of alder leaves, Douglas-fir needles and red cedar fronds, which all reached constant still-water settling velocities after only a few days of soaking. In contrast, the settling velocity of branch pieces continued to increase for 13 days, eventually reaching much higher values than any other OM type. Dried alder leaves became negatively buoyant after only two days of immersion, while other types took substantially longer (up to 24 days) before the specific gravity of all particles was >1. 3.,We released saturated OM particles in an experimental channel and found that all particle types travelled further in a fast, shallow ,riffle' than a slow, deep ,pool'. Comparisons with a passive settlement null model indicated that leaves were retained more rapidly than expected in the riffle (by large protruding stones), while the three stiff particle types travelled further than expected (probably due to turbulent suspension) and were retained when they settled in deeper water between larger stones. In pools, passive settlement appeared to dominate the retention of all OM types, with leaves travelling furthest. 4.,These retention patterns corresponded well with those observed when saturated OM particles collected in the field were released in two pools and two riffles in a second-order coastal stream. 5.,When the experimental channel and in-stream data were combined, the retention rates of the three stiff OM types were closely related to calculated Rouse numbers (Rouse number = particle settling velocity/shear velocity), whereas the retention rate of alder leaves was not. This suggests that different physical mechanisms are responsible for the retention of leaves and stiff OM types in shallow streams. [source]


Is structure or function a better measure of the effects of water abstraction on ecosystem integrity?

FRESHWATER BIOLOGY, Issue 10 2009
RUSSELL G. DEATH
Summary 1. Assessments of flow abstractions in streams often focus on changes to biological communities and in-stream physical characteristics, with little consideration for changes in ecosystem functioning. It is unclear whether functional indicators of ecosystem health may be useful for assessing the impacts of reduced discharge on small streams. 2. We used weirs and diversions to reduce stream discharge by over 89% in three small New Zealand streams (11,84 L s,1), ranging in water quality from pristine to moderately impaired. 3. We used both structural (benthic invertebrates) and functional (drifting invertebrates, leaf breakdown, coarse particulate organic matter (CPOM) retention and primary productivity) measures of ecosystem integrity to compare responses to water abstraction in before-after, control-impact designed experiments during summer 2005. 4. At the pristine site, the density of invertebrates, taxon richness, Macroinvertebrate Community Index (MCI), Quantitative MCI, percentage of Ephemeroptera, Plecoptera and Trichoptera individuals and percentage of filter-feeders decreased in response to reduced flows. Only taxon richness decreased at the mildly impaired stream, and reduced discharge had no effect on the invertebrate community at the stream with the lowest water quality. 5. We found that reduced discharge had little influence on the breakdown rate of willow leaves in mesh bags over 1 month. Primary productivity was also relatively insensitive to water abstraction. However, CPOM retention increased with decreased flows. Drift propensity of invertebrates increased at two sites but only within the first few days after flow reduction. 6. Structural measures of ecosystem integrity suggested that the impacts of water abstraction differed among streams of varying water quality, probably because of differences in the sensitivity of invertebrate assemblages in the three streams. In contrast, the three functional measures tested were generally less sensitive to water abstraction impacts, although understanding how stream ecosystems respond to water abstraction clearly requires that both are considered. [source]


Seasonal and inter-stream variations in the population dynamics, growth and secondary production of an algivorous fish (Pseudogastromyzon myersi: Balitoridae) in monsoonal Hong Kong

FRESHWATER BIOLOGY, Issue 9 2009
GRACE Y. YANG
Summary 1.,Balitorid loaches are widespread and highly diverse in Asian streams, yet their life history and ecology have received little attention. We investigated seasonal (wet versus dry season) and spatial variation in populations of algivorous Pseudogastromyzon myersi in Hong Kong, and estimated the magnitude of secondary production by this fish in pools in four streams (two shaded and two unshaded) over a 15-month period. 2.,Mean population densities of P. myersi ranged from 6.0 to 23.2 individuals m,2, constituting more than half (and typically >70%) of benthic fishes censused. Abundance was c. 25% greater in the wet season, when recruitment occurred. Significant density differences among streams were not related to shading conditions and were evident despite small-scale variations in P. myersi abundance among pools. Mean biomass varied among streams from 0.85 to 3.87 g ash-free dry weight (AFDW) m,2. Spatial and seasonal patterns in biomass and density were similar, apart from some minor disparities attributable to differences in mean body size among populations. 3.,All four P. myersi populations bred once a year in June and July, and life spans varied from 24 to 26 months. Populations consisted of three cohorts immediately after recruitment but, for most of the study period, only two cohorts were evident. Cohort-specific growth rates did not differ significantly among streams but, in all streams, younger cohorts had higher cohort-specific growth rates. 4.,Secondary production of P. myersi estimated by the size-frequency (SF) method was 2.7,11.5 g AFDW m,2 year,1 and almost twice that calculated by the increment-summation (IS) method (1.2,6.6 g AFDW m,2 year,1). Annual P/B ratios were 1.17,2.16 year,1 (IS) and 2.73,3.22 year,1 (SF). Highest production was recorded in an unshaded stream and the lowest in a shaded stream, but site rankings by production did not otherwise match shading conditions. Wet-season production was six times greater than dry-season production, and daily production fell to almost zero during January and February. Cool temperatures (<17 °C) may have limited fish activity and influenced detectability during some dry-season censuses. Estimates of abundance and annual production by P. myersi are therefore conservative. 5.,Comparisons with the literature indicate that the abundance and production of P. myersi in Hong Kong was high relative to other benthic fishes in tropical Asia, or their temperate counterparts in small streams. Manipulative experiments are needed to determine the influence of P. myersi, and algivorous balitorids in general, on periphyton dynamics and energy flow in Asian streams. [source]


Existing in plenty: abundance, biomass and diversity of ciliates and meiofauna in small streams

FRESHWATER BIOLOGY, Issue 4 2008
JULIA REISS
Summary 1. The ciliate and metazoan meiofaunal assemblages of two contrasting lowland streams in south-east England were examined over the period of a year, using a high taxonomic resolution. Monthly samples were taken from an oligotrophic, acid stream (Lone Oak) and a circumneutral, nutrient-rich stream (Pant) between March 2003 and February 2004. 2. We assessed the relative importance of ciliates and rotifers within the small-sized benthic assemblage with respect to their abundance, biomass and species richness. In addition, we examined the influence of abiotic and biotic parameters and season on the assemblage composition at two levels of taxonomic resolution (species and groups). 3. Ciliates dominated the assemblages numerically, with maximum densities of over 900 000 and 6 000 000 ind. m,2 in Lone Oak and Pant respectively. Rotifers and nematodes dominated meiofaunal densities, although their contribution to total meiofaunal biomass (maxima of 71.9 mgC m,2 in Lone Oak and of 646.8 mgC m,2 in the Pant) was low and rotifer biomass equalled that of ciliates. 4. Although the two streams differed in terms of total abundance of ciliates and meiofauna and shared only 7% of species, the relative proportion of groups was similar. Sediment grain size distribution (the percentile representing the 0.5,1 mm fraction) was correlated with assemblage structure at the species level, revealing the tight coupling between these small organisms and their physical environment. Seasonal changes in the relative abundance of groups followed similar patterns in both streams, and were correlated with the abundance of cyclopoid copepods and temperature. 5. Information on these highly abundant but often overlooked faunal groups is essential for estimates of overall abundance, biomass, species richness and productivity in the benthos, and as such has important implications for several areas of aquatic research, e.g. for those dealing with trophic dynamics. [source]


Short-term climatic trends affect the temporal variability of macroinvertebrates in California ,Mediterranean' streams

FRESHWATER BIOLOGY, Issue 12 2007
LEAH A. BÊCHE
Summary 1. Long-term studies in ecology are essential for understanding natural variability and in interpreting responses to disturbances and human perturbations. We assessed the long-term variability, stability and persistence of macroinvertebrate communities by analysing data from three regions in northern California with a mediterranean-climate. During the study period, precipitation either increased or decreased, and extreme drought events occurred in each region. 2. Temporal trends in precipitation resulted in shifts from ,dry-year' communities, dominated by taxa adapted to no or low flow, to ,wet-year' communities dominated by taxa adapted to high flows. The abundance of chironomid larvae was an important driver of community change. Directional change in community composition occurred at all sites and was correlated with precipitation patterns, with more dramatic change occurring in smaller streams. 3. All communities exhibited high to moderate persistence (defined by the presence/absence of a species) and moderate to low stability (defined by changes in abundance) over the study period. Stability and persistence were correlated with climatic variation (precipitation and El Niño Southern Oscillation) and stream size. Stability and persistence increased as a result of drought in small streams (first-order) but decreased in larger streams (second- and third-order). Communities from the dry season were less stable than those from the wet-season. 4. This study demonstrates the importance of long-term studies in capturing the effects of and recovery from rare events, such as the prolonged and extreme droughts considered here. [source]


Population genetic structure of three freshwater mussel (Unionidae) species within a small stream system: significant variation at local spatial scales

FRESHWATER BIOLOGY, Issue 8 2007
DAVID J. BERG
Summary 1. Unionid mussels are highly threatened, but little is known about genetic structure in populations of these organisms. We used allozyme electrophoresis to examine partitioning of genetic variation in three locally abundant and widely distributed species of mussels from a catchment in Ohio. 2. Within-population variation was similar to that previously reported for freshwater mussels, but genotype frequencies exhibited heterozygote deficiencies in many instances. All three species exhibited significant among-population variation. Evidence of isolation-by-distance was found in Elliptio dilatata and Ptychobranchus fasciolaris, while Lampsilis siliquoidea showed no geographical pattern of among-population variation. 3. Our results suggest that the isolating effects of genetic drift were greater in L. siliquoidea than in the other species. Differentiation of populations occurred at a much smaller spatial scale than has previously been found in freshwater mussels. Differences among species may reflect differences in the dispersal abilities of fishes that serve as hosts for the glochidia larvae of mussels. 4. Based on our results, we hypothesise that species of mussels that are common to large rivers exhibit relatively large amounts of within-population genetic variation and little differentiation over large geographical distances. Conversely, species typical of small streams show lower within-population genetic variation and populations will be more isolated. If this hypothesis can be supported, it may prove useful in the design of conservation strategies that maintain the genetic structure of target species. [source]


Flow-substrate interactions create and mediate leaf litter resource patches in streams

FRESHWATER BIOLOGY, Issue 3 2006
TRENT M. HOOVER
Summary 1. The roles that streambed geometry, channel morphology, and water velocity play in the retention and subsequent breakdown of leaf litter in small streams were examined by conducting a series of field and laboratory experiments. 2. In the first experiment, conditioned red alder (Alnus rubra Bongard) leaves were released individually in three riffles and three pools in a second-order stream. The transport distance of each leaf was measured. Several channel and streambed variables were measured at each leaf settlement location and compared with a similar number of measurements taken at regular intervals along streambed transects (,reference locations'). Channel features (such as water depth) and substrate variables (including stone height, stone height-to-width ratio, and relative protrusion) were the most important factors in leaf retention. 3. In the second experiment, the role of settlement location and reach type in determining the rate of leaf litter breakdown was examined by placing individual conditioned red alder leaves in exposed and sheltered locations (on the upper and lower edges of the upstream face of streambed stones, respectively) in riffle and pool habitats. After 10 days, percent mass remaining of each leaf was measured. Generally, leaves broke down faster in pools than in riffles. However, the role of exposure in breakdown rate differed between reach types (exposed pool > sheltered pool > sheltered riffle > exposed riffle). 4. In the third experiment, the importance of substrate geometry on leaf litter retention was examined by individually releasing artificial leaves upstream of a series of substrate models of varying shape. Substrates with high-angle upstream faces (were vertical or close to vertical), and that had high aspect ratios (were tall relative to their width), retained leaves more effectively. 5. These results show that streambed morphology is an important factor in leaf litter retention and breakdown. Interactions between substrate and flow characteristics lead to the creation of detrital resource patchiness, and may partition leaf litter inputs between riffles and pools in streams at baseflow conditions. [source]


Catchment urbanisation and increased benthic algal biomass in streams: linking mechanisms to management

FRESHWATER BIOLOGY, Issue 6 2004
Sally L. Taylor
Summary 1. Urbanisation is an important cause of eutrophication in waters draining urban areas. We determined whether benthic algal biomass in small streams draining urban areas was explained primarily by small-scale factors (benthic light, substratum type and nutrient concentrations) within a stream, or by catchment-scale variables that incorporate the interacting multiple impacts of urbanisation (i.e. variables that describe urban density and the intensity of drainage or septic tank systems). 2. Benthic algal biomass was assessed as chlorophyll a density (chl a) in 16 streams spanning a rural,urban gradient, with both a wide range of urban density and of piped stormwater infrastructure intensity on the eastern fringe of metropolitan Melbourne, Australia. The gradient of urban density among streams was broadly correlated with catchment imperviousness, drainage connection (proportion of impervious areas connected to streams by stormwater pipes), altitude, longitude and median phosphorus concentration. Catchment area, septic tank density, median nitrogen concentration, benthic light (photosynthetically active radiation) and substratum type were not strongly correlated with the urban gradient. 3. Variation in benthic light and substratum type within streams explained a relatively small amount of variation in log chl a (3,11 and 1,13%, respectively) compared with between-site variation (39,54%). 4. Median chl a was positively correlated with catchment urbanisation, with a large proportion of variance explained jointly (as determined by hierarchical partitioning) by those variables correlated with urban density. Independent of this correlation, the contributions of drainage connection and altitude to the explained variance in chl a were significant. 5. The direct connection of impervious surfaces to streams by stormwater pipes is hypothesised as the main determinant of algal biomass in these streams through its effect on the supply of phosphorus, possibly in interaction with stormwater-related impacts on grazing fauna. Management of benthic algal biomass in streams of urbanised catchments is likely to be most effective through the application of stormwater management approaches that reduce drainage connection. [source]


The effect of fixed-count subsampling on macroinvertebrate biomonitoring in small streams

FRESHWATER BIOLOGY, Issue 2 2000
Craig P. Doberstein
Summary 1When rigorous standards of collecting and analysing data are maintained, biological monitoring adds valuable information to water resource assessments. Decisions, from study design and field methods to laboratory procedures and data analysis, affect assessment quality. Subsampling - a laboratory procedure in which researchers count and identify a random subset of field samples - is widespread yet controversial. What are the consequences of subsampling? 2To explore this question, random subsamples were computer generated for subsample sizes ranging from 100 to 1000 individuals as compared with the results of counting whole samples. The study was done on benthic invertebrate samples collected from five Puget Sound lowland streams near Seattle, WA, USA. For each replicate subsample, values for 10 biological attributes (e.g. total number of taxa) and for the 10-metric benthic index of biological integrity (B-IBI) were computed. 3Variance of each metric and B-IBI for each subsample size was compared with variance associated with fully counted samples generated using the bootstrap algorithm. From the measures of variance, we computed the maximum number of distinguishable classes of stream condition as a function of sample size for each metric and for B-IBI. 4Subsampling significantly decreased the maximum number of distinguishable stream classes for B-IBI, from 8.2 for fully counted samples to 2.8 classes for 100-organism subsamples. For subsamples containing 100,300 individuals, discriminatory power was low enough to mislead water resource decision makers. [source]


Voltinism flexibility of a riverine dragonfly along thermal gradients

GLOBAL CHANGE BIOLOGY, Issue 3 2008
ERIK BRAUNE
Abstract Potential effects of future warming should be reflected in life history patterns of aquatic organisms observed in warmer climates or in habitats that are different in ambient temperature. In the special case of the dragonfly Gomphus vulgatissimus (L.) (Odonata: Gomphidae) previous research suggests that voltinism decreases from south to north. We analysed data on voltinism from 11 sample sites along a latitudinal gradient from about 44°N to 53°N, comprising small streams to medium-sized rivers. Furthermore, to simulate different conditions and to allow projections for future climate change scenarios, we developed a population dynamic model based on a projection matrix approach. The parameters of the model are dependent on temperature and day length. Our field results indicate a decrease in voltinism along the latitudinal gradient from southern to northern Europe and a corresponding increase of voltinism with higher temperatures. An increase in voltinism with width of the running water implies an effect of varying habitat temperature. Under the impact of global warming, our model predicts an increased development speed, particularly in the northern part of the latitudinal gradient, an extension of the northern range limit and changes in phenology of G. vulgatissimus, leading to an extension of the flight season in certain regions along the gradient. [source]