Home About us Contact | |||
Small Mammal Populations (small + mammal_population)
Selected AbstractsResponse of small rodents to manipulations of vegetation height in agro-ecosystemsINTEGRATIVE ZOOLOGY (ELECTRONIC), Issue 1 2008Jens JACOB Abstract Some small mammal populations require human interference to conserve rare or threatened species or to minimize adverse effects in plant production. Without a thorough understanding about how small rodents behave in their environment and consideration of how they react to management efforts, management will not be optimal. Social behavior, spatial and temporal activity patterns, predator avoidance and other behavioral responses can affect pest rodent management. Some of these behavioral patterns and their causes have been well studied. However, their impact on pest rodent management, especially for novel management approaches, is not always clear. Habitat manipulation occurs necessarily through land use and intentionally to reduce shelter and food availability and to increase predation pressure on rodents. Rodents often respond to decreased vegetation height with reduced movements and increased risk sensitivity in their feeding behavior. This seems to result mainly from an elevated perceived predation risk. Behavioral responses may lessen the efficacy of the management because the desired effects of predators might be mediated. It remains largely unknown to what extent such responses can compensate at the population level for the expected consequences of habitat manipulation and how population size and crop damage are affected. It is advantageous to understand how target and non-target species react to habitat manipulation to maximize the management effects by appropriate techniques, timing and spatial scale without causing unwanted effects at the system level. [source] The Yellow-necked Mouse Apodemus flavicollis in Britain: status and analysis of factors affecting distributionMAMMAL REVIEW, Issue 3-4 2001Aidan C. W. Marsh ABSTRACT A national survey of the Yellow-necked Mouse (Apodemus flavicollis) in Britain was undertaken by The Mammal Society. The live-trapping study sampled small mammal populations from 168 deciduous woodlands in autumn 1998. Within their range, Yellow-necked Mice were widespread in deciduous woodland and were more abundant than Wood Mice in 15% of the woodlands sampled. These trapping records, as well as records solicited from local recorders, record centres and individuals, supplemented the existing distribution map, confirming the general pattern, but with minor extensions to some range borders. Yellow-necked Mice were found in woodland of all ages, but were more common in woods of ancient origin than in younger woodland. Woodland size was not important in determining the presence or abundance of Yellow-necked Mice, but they were more often absent from woods more than 2 km from neighbouring substantial woodland. The presence of Yellow-necked Mice did not affect the relative abundance of Wood Mice (Apodemus sylvaticus). However, the decline in the proportion of breeding male Wood Mice at the end of the main breeding season was more marked in those woods that also contained Yellow-necked Mice. Where their ranges overlapped, Bank Voles (Clethrionomys glareolus) were less abundant where Yellow-necked Mice were also present. The distribution of the Yellow-necked Mouse was explored with respect to a number of climatic, soil and habitat variables. Maximum summer temperature was the most significant variable explaining distribution, although woodland cover variables also contributed. Soil moisture and pH, mean rainfall and winter temperature parameters did not predict Yellow-necked Mouse distribution. Low summer temperature may limit Yellow-necked Mouse distribution through its impact on tree seed production and diversity. Climatic change leading to a rise in summer temperature might encourage range expansion by Yellow-necked Mice, if their other habitat requirements are met. [source] Arid Recovery , A comparison of reptile and small mammal populations inside and outside a large rabbit, cat and fox-proof exclosure in arid South AustraliaAUSTRAL ECOLOGY, Issue 2 2009KATHERINE ELIZABETH MOSEBY Abstract Australian arid zone mammal species within the Critical Weight Range (CWR) of 35 g,5.5 kg have suffered disproportionately in the global epidemic of contemporary faunal extinctions. CWR extinctions have been attributed largely to the effects of introduced or invasive mammals; however, the impact of these threatening processes on smaller mammals and reptiles is less clear. The change in small mammal and reptile assemblages after the removal of rabbits, cats and foxes was studied over a 6-year period in a landscape-scale exclosure in the Australian arid zone. Rodents, particularly Notomys alexis and Pseudomys bolami, increased to 15 times higher inside the feral-proof Arid Recovery Reserve compared with outside sites, where rabbits, cats and foxes were still present. Predation by cats was thought to exert the greatest influence on rodent numbers owing to the maintenance of the disparity in rodent responses through dry years and the differences in dietary preferences between rabbits and P. bolami. The presence of introduced Mus domesticus or medium-sized re-introduced mammal species did not significantly affect resident small mammal or reptile abundance. Abundance of most dasyurids and small lizards did not change significantly after the removal of feral animals although reductions in gecko populations inside the reserve may be attributable to second order trophic interactions or subtle changes in vegetation structure and cover. This study suggests that populations of rodent species in northern South Australia below the CWR may also be significantly affected by introduced cats, foxes and/or rabbits and that a taxa specific model of Australian mammal decline may be more accurate than one based on body weight. [source] Impacts of Agriculture on the Diet and Productivity of Mackinder's Eagle Owls (Bubo capensis mackinderi ) in KenyaBIOTROPICA, Issue 4 2009Darcy L. Ogada ABSTRACT Land conversion for agriculture is an increasing threat to biodiversity conservation, but its ecological effects on African birds is practically unknown. We investigated the impacts of agriculture on the diet and productivity of a small, disjunct population of Mackinder's eagle owls (Bubo capensis mackinderi ) in central Kenya. Owl diet was determined by analysis of pellets and other remains and compared to small mammal populations estimated by live trapping in two habitats. Small mammal abundance was low and averaged 7.4 small mammals/ha in farms and 0.5 small mammals/ha in grassland. Owls consumed a wide diversity of prey. The majority were mammals (87%) followed by birds (7%) and insects (5%). The percentage of small mammals in owl diet correlated positively with the relative abundance of small mammals during monthly trapping sessions. Diet composition did not influence owl breeding success. Farming activities affected owl diet composition through crop production. The amount of maize, peas, and carrots growing in farms was correlated with the abundance of Mastomys sp. and Procavia sp. in the owl's diet. Agricultural activities had a large effect on Mackinder's eagle owl diet by increasing the abundance of certain small-mammal prey and attracting owl prey to farms, though farming practices harmful to owls were observed. [source] |