Home About us Contact | |||
Small Geographical Scale (small + geographical_scale)
Selected AbstractsDistribution of individual inbreeding coefficients, relatedness and influence of stocking on native anadromous brown trout (Salmo trutta) population structureMOLECULAR ECOLOGY, Issue 9 2001D. E. Ruzzante Abstract We examined polymorphism at seven microsatellite loci in 4023 brown trout (Salmo trutta) collected from 32 tributaries to the Limfjord, Denmark (~200 km) and from two hatcheries used for stocking. Populations differ in their estimated sizes and stocking histories. Mean individual inbreeding coefficients do not differ among locations within rivers. Relatedness varies between sites within rivers indicating varied local dynamics at a very small geographical scale. Relatedness is sometimes lower than expected among an equal number of simulated individuals with randomized genotypes, suggesting structure within locations. Five per cent of the genetic variance is distributed among rivers (FST = 0.049), but in the western, less heavily stocked, area of the Limfjord a higher proportion of the genetic variance is distributed among rivers than among locations within rivers. The reverse is true of the eastern, more heavily stocked, area of the Limfjord. Here, a higher proportion of the genetic variance is distributed among locations within rivers than among rivers. Assignment tests reveal that the majority of trout (mean 77% of all fish) are more probably of local origin than hatchery origin but this proportion varies regionally, with rivers in the western area of the Limfjord showing a relatively high (mean 88%) and those in the eastern area showing a relatively low (mean 72%) proportion of locally assigned trout. These results can be interpreted as reflecting stocking impact. Also, the proportion of locally assigned trout correlates with the populations' stocking histories, with rivers presently subjected to stocking (hatchery trout) showing low (mean ~0.73), and rivers where stocking was discontinued showing high (mean ~0.84) proportions of local fish, probably reflecting lower survival of hatchery than of wild trout. There is evidence for isolation by distance at a large geographical scale when individual river populations are pooled into nine geographical regions but not at a small geographical scale when populations are considered individually. We reject the null hypothesis that stocking has had no impact on population structure but the relatively high proportion of locally assigned trout in populations where stocking with domestic fish no longer takes place suggests limited long-term success of stocking. [source] Patterns of phenotypic and genetic variability show hidden diversity in Scottish Arctic charrECOLOGY OF FRESHWATER FISH, Issue 1 2007C. E. Adams Abstract,,, This study examined the degree and pattern of variability in trophic morphology in Arctic charr (Salvelinus alpinus L.) at three spatial scales: across 22 populations from Scotland and between and within two adjacent catchments (Laxford and Shin) in northern Scotland. In addition, the variability at six microsatellite loci between and within the Laxford and Shin systems was determined. Habitat use by charr differed significantly between populations. The pattern of variability in trophic morphology, known to influence foraging ability in charr, showed a very high degree of between-population variation with at least 52% of population pairs showing significant differences in head shape. Trophic morphology and genetic variation was also high over small geographical scales; variation being as high between charr from lakes within the same catchment, as between adjacent catchments. The pattern of both phenotypic and genotypic variation suggests a mosaic of variation across populations with geographically close populations often as distinct from each other as populations with much greater separation. Very low levels of effective migrants between populations, even within the same catchment, suggest that this variation is being maintained by very low straying rates between phenotypically and genetically distinct populations, even when there is no apparent barrier to movement. We conclude that the genetic and phenotypic integrity of charr populations across Scotland is high and that this adaptive radiation constitutes a ,hidden' element of diversity in northern freshwater systems. Two consequences of this are that the population (rather than the species) makes a more rational unit for the consideration of conservation strategies and that the habitat requirements and therefore management needs may differ significantly between populations. [source] Microgeographical diversification of threespine stickleback: body shape,habitat correlations in a small, ecologically diverse Alaskan drainageBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009WINDSOR E. AGUIRRE Adaptive radiations are a major source of evolutionary diversity in nature, and understanding how they originate and how organisms diversify during the early stages of adaptive radiation is a major problem in evolutionary biology. The relationship between habitat type and body shape variation was investigated in a postglacial radiation of threespine stickleback in the upper Fish Creek drainage of Cook Inlet, Alaska. Although small, the upper Fish Creek drainage includes ecologically diverse lakes and streams in close proximity to one another that harbour abundant stickleback. Specimens from ancestral anadromous and derived resident freshwater populations differed substantially and could be distinguished by body shape alone, suggesting that the initial stages of adaptation contribute disproportionately to evolutionary divergence. Body shape divergence among resident freshwater populations was also considerable, and phenotypic distances among samples from freshwater populations were associated with habitat type but not geographical distance. As expected, stream stickleback from slow-moving, structurally complex environments tended to have the deepest bodies, stickleback from lakes with a mostly benthic habitat were similar but less extreme, and stickleback from lakes with a mostly limnetic habitat were the most shallow-bodied, elongate fish. Beyond adapting rapidly to conditions in freshwater environments, stickleback can diversify rapidly over small geographical scales in freshwater systems despite opportunities for gene flow. This study highlights the importance of ecological heterogeneity over small geographical scales for evolutionary diversification during the early stages of adaptive radiation, and lays the foundation for future research on this ecologically diverse, postglacial system. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 139,151. [source] |