Home About us Contact | |||
Smooth Muscle Contractility (smooth + muscle_contractility)
Selected AbstractsIn vitro effects of lidocaine on the contractility of equine jejunal smooth muscle challenged by ischaemia-reperfusion injuryEQUINE VETERINARY JOURNAL, Issue 1 2010M. GUSCHLBAUER Summary Reasons for performing study: Post operative ileus (POI) in horses is a severe complication after colic surgery. A commonly used prokinetic drug is lidocaine, which has been shown to have stimulatory effects on intestinal motility. The cellular mechanisms through which lidocaine affects smooth muscle activity are not yet known. Objectives: To examine the effects of lidocaine on smooth muscle in vitro and identify mechanisms by which it may affect the contractility of intestinal smooth muscle. Hypothesis: Ischaemia and reperfusion associated with intestinal strangulation can cause smooth muscle injury. Consequently, muscle cell functionality and contractile performance is decreased. Lidocaine can improve basic cell functions and thereby muscle cell contractility especially in ischaemia-reperfusion-challenged smooth muscle. Methods: To examine the effects of lidocaine on smooth muscle function directly, isometric force performance was measured in vitro in noninjured and in vivo ischaemia-reperfusion injured smooth muscle tissues. Dose-dependent response of lidocaine was measured in both samples. To assess membrane permeability as a marker of basic cell function, release of creatine kinase (CK) was measured by in vitro incubations. Results: Lidocaine-stimulated contractility of ischaemia-reperfusion injured smooth muscle was more pronounced than that of noninjured smooth muscle. A 3-phasic dose-dependency was observed with an initial recovery of contractility especially in ischaemia-reperfusion injured smooth muscle followed by a plateau phase where contractility was maintained over a broad concentration range. CK release was decreased by lidocaine. Conclusion: Lidocaine may improve smooth muscle contractility and basic cell function by cellular repair mechanisms which are still unknown. Improving contractility of smooth muscle after ischaemia-reperfusion injury is essential in recovery of propulsive intestinal motility. Potential relevance: Characterisation of the cellular mechanisms of effects of lidocaine, especially on ischaemia-reperfusion injured smooth muscle, may lead to improved treatment strategies for horses with POI. [source] Development and physiology of gastric dilation air sacculitis in Chinook salmon, Oncorhynchus tshawytscha (Walbaum)JOURNAL OF FISH DISEASES, Issue 8 2007L G Forgan Abstract The syndrome known as gastric dilation air sacculitis (GDAS) has previously been shown to affect Chinook salmon, Oncorhynchus tshawytscha, in seawater (SW) aquaculture. Feed and osmoregulatory stress have been implicated as potential epidemiological co-factors. The development and physiology of GDAS was investigated in SW and freshwater (FW) adapted smolts. Diet A (low-cohesion pellets) and diet B (high-cohesion pellets) were fed to both FW- and SW-adapted fish. GDAS was induced only in the SW trial on feeding diet A. Stimulated gastro-intestinal (GI) smooth muscle contractility, and fluid transport by the pyloric caeca were different in GDAS-affected fish, which also showed osmoregulatory dysfunction. Cardiac stomach (CS) smooth muscle contractility in response to acetylcholine and potassium chloride (KCl) was significantly reduced in fish fed diet A relative to controls from weeks 3,5. In contrast, maximal pyloric sphincter (PS) circular smooth muscle contraction in response to KCl was significantly elevated in fish fed diet A in weeks 4 and 5. Serum osmolality was elevated in GDAS-affected fish from week 2 of the SW trial. Fluid transport from the mucosal to serosal surface of isolated pyloric caeca was significantly reduced in weeks 3, 4 and 5 in SW fish fed diet A. Gastric evacuation from the stomach of healthy fish was shown to be significantly different when diets of low- and high-cohesion were fed. The results are consistent with the intestinal brake playing a role in the development of the disease. [source] Alteration of urothelial-mediated tone in the ischemic bladder: Role of eicosanoids,NEUROUROLOGY AND URODYNAMICS, Issue 3 2004Kazem M. Azadzoi Abstract Aims Previously we showed that ischemia alters bladder smooth muscle contractility in the rabbit. This study investigates the role of urothelium and eicosanoid-release in ischemic bladder smooth muscle instability. Materials and Methods Male New Zealand white rabbits were divided into treated (n,=,12) and age-matched control (n,=,10) groups. The treated group underwent balloon endothelial injury of the iliac arteries, and then received 4 weeks of cholesterol diet, followed by 4 weeks of regular diet. The control group received a regular diet for 8 weeks. After 8 weeks, blood flow for both the iliac arteries and the bladder as well as bladder oxygen tension were recorded. In one-half of each ischemic and control bladder, the urothelium was removed. Bladder tissues were processed for organ bath and enzyme-immunoassay (EIA) of prostaglandins (PGs) and leukotrienes (LTs). Results A significant decrease in iliac arterial blood flow, bladder wall blood flow, and bladder oxygen tension was found in the treated group. Bladder ischemia increased the frequency and amplitude of baseline spontaneous smooth muscle contractility. Ischemic tissues with urothelium (Uro+) demonstrated significant increases in the contractile response to electrical field stimulation (EFS) and carbachol relative to control Uro+ tissues. Urothelial removal increased smooth muscle contraction in the control tissues but had no significant effect in the ischemic/hypoxic tissues. Contraction of control tissues without urothelium (Uro,) was similar to contraction of ischemic Uro+ tissues. Contractions of ischemic Uro+ and control Uro, tissues were unchanged after treatment with the cyclooxygenase (COX) inhibitor indomethacin, while they were significantly reduced by the 5-lipoxygenase (5-LO) inhibitor NDGA. EIA showed no change in PGs release from the ischemic urothelium, but significant increase in PGF2-, and thromboxane A2 release from the ischemic suburothelial tissue. Ischemia increased the release of LTB4, LTC4, and LTE4 from both urothelium and suburothelial tissue. Conclusions Our studies suggest loss of urothelial-mediated tone and LTs-mediated smooth muscle instability in the chronically ischemic/hypoxic bladder. Neurourol. Urodynam. 23:258,264, 2004. Published 2004 Wiley-Liss, Inc. [source] Correlation of tracheal smooth muscle function with structure and protein expression during early development,PEDIATRIC PULMONOLOGY, Issue 5 2007Aaron B. Cullen MD Abstract With increased survival of premature infants, understanding the impact of development on airway function and structure is imperative. Airway smooth muscle plays a primary role in the modulation of airway function. The purpose of this study is to correlate the functional maturation of airway smooth muscle during the perinatal period with structural alterations at the cellular, ultrastructural, and molecular levels. Length-tension and dose-response analyses were performed on tracheal rings acquired from preterm and term newborn lambs. Subsequent structural analyses included isolated airway smooth muscle cell length, electron microscopy, and myosin heavy chain isoform expression measurements. Functionally the compliance, contractility, and agonist sensitivity of the tracheal rings matured during preterm to term development. Structurally, isolated cell lengths and electron microscopic ultrastructure were not significantly altered during perinatal development. However, expression of myosin heavy chain isoforms increased significantly across the age range analyzed, correlating with the maturational increase in smooth muscle contractility. In conclusion, the developmental alterations in tracheal function appear due, in part, to enhanced smooth muscle myosin heavy chain expression. Pediatr Pulmonol. 2007; 42:421,432. © 2007 Wiley-Liss, Inc. [source] Influence of Immunosuppression on Alloresponse, Inflammation and Contractile Function of Graft After Intestinal TransplantationAMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2010J. Fujishiro In small bowel transplantation (SBTx), graft manipulation, ischemia/reperfusion injury and acute rejection initiate a severe cellular and molecular inflammatory response in the muscularis propria leading to impaired motility of the graft. This study examined and compared the effect of tacrolimus and sirolimus on inflammation in graft muscularis. After allogeneic orthotopic SBTx, recipient rats were treated with tacrolimus or sirolimus. Tacrolimus and sirolimus attenuated neutrophilic, macrophage and T-cell infiltration in graft muscularis, which was associated with reduced apoptotic cell death. Nonspecific inflammatory mediators (IL-6, MCP-1) and T-cell activation markers (IL-2, IFN-,) were highly upregulated in allogeneic control graft muscularis 24 h and 7 days after SBTx, and tacrolimus and sirolimus significantly suppressed upregulation of these mediators. In vitro organ bath method demonstrated a severe decrease in graft smooth muscle contractility in allogeneic control (22% of normal control). Correlating with attenuated upregulation of iNOS, tacrolimus and sirolimus treatment significantly improved contractility (64% and 72%, respectively). Although sirolimus reduced cellular and molecular inflammatory response more efficiently after 24 h, contrary tacrolimus prevented acute rejection more efficiently. In conclusion, tacrolimus and sirolimus attenuate cellular and molecular inflammatory response in graft muscularis and subsequent dysmotility of the graft after allogeneic SBTx. [source] Resident Macrophages are Involved in Intestinal Transplantation-Associated Inflammation and Motoric Dysfunction of the Graft MuscularisAMERICAN JOURNAL OF TRANSPLANTATION, Issue 5 2007N. Schaefer Gut manipulation and ischemia/reperfusion evoke an inflammatory response within the intestinal muscularis that contributes to dysmotility. We hypothesize that resident macrophages play a key role in initiating the inflammatory cascade. Isogenic small bowel transplantation was performed in Lewis rats. The impact of recovery of organs on muscularis inflammation was investigated by comparing cold whole-body perfusion after versus prior to recovery. The role of macrophages was investigated by transplantation of macrophage-depleted gut. Leukocytes were counted using muscularis whole mounts. Mediator expression was determined by real-time RT-PCR. Contractility was assessed in a standard organ bath. Both organ recovery and ischemia/reperfusion induced leukocyte recruitment and a significant upregulation in IL-6, MCP-1, ICAM-1 and iNOS mRNAs. Although organ recovery in cold ischemia prevented early gene expression, peak expression was not changed by modification of the recovery technique. Compared to controls, transplanted animals showed a 65% decrease in smooth muscle contractility. In contrast, transplanted macrophage-depleted isografts exhibited significant less leukocyte infiltration and only a 19% decrease in contractile activity. In summary, intestinal manipulation during recovery of organs initiates a functionally relevant inflammatory response within the intestinal muscularis that is massively intensified by the ischemia reperfusion injury. Resident muscularis macrophages participate in initiating this inflammatory response. [source] Phosphoinositide 3-kinase mediated signalling contributes to development of diabetes-induced abnormal vascular reactivity of rat carotid arteryCELL BIOCHEMISTRY AND FUNCTION, Issue 1 2006Mariam H. M. Yousif Abstract Diabetes mellitus is associated with vascular complications, including an impairment of vascular function and alterations in the reactivity of blood vessels to vasoactive agents. Phosphatidylinositol 3-kinase (PI3K) is a signalling enzyme that plays key roles in vascular growth, proliferation and cellular apoptosis and is implicated in modulating vascular smooth muscle contractility. The aim of this study was to determine whether PI3K plays a role in development of diabetes-induced altered vascular reactivity to selected vasoconstrictors and vasodilators. The effect of 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), a selective PI3K inhibitor, on isolated segments of carotid arteries from streptozotocin (STZ)-diabetic rats was investigated. Ring segments of the isolated carotid arteries were mounted in organ baths to measure changes in isometric tension. Our results showed that STZ treatment produced an increase in the vasoconstrictor response to norepinephrine (NE), angiotensin II (Ang II) and endothelin-1 (ET-1) and an attenuated vasodilator response to carbachol and histamine in the isolated carotid arteries from STZ-diabetic animals. Diabetes-induced impaired vascular responsiveness to the vasoactive agonists was prevented by chronic inhibition of PI3K by LY294002 even though blood glucose levels remained high. This is the first study to show that selective inhibition of PI3K can attenuate the development of diabetes-induced abnormal vascular reactivity in the isolated carotid arteries of diabetic rats. Copyright © 2005 John Wiley & Sons, Ltd. [source] Interleukin-1, attenuates endothelin B receptor-mediated airway contractions in a murine in vitro model of asthma: roles of endothelin converting enzyme and mitogen-activated protein kinase pathwaysCLINICAL & EXPERIMENTAL ALLERGY, Issue 9 2004Y. Zhang Summary Background Asthma is a chronic airway disease, known to involve several inflammatory mediators. Little is known about how these mediators interact in order to produce or attenuate even basic features of the disease, like airway hyper-reactivity and remodelling. Endothelin-1 (ET-1) and IL-1, are two mediators suggested to play important roles in the induction of airway inflammation. Objective To investigate the interactions between ET-1 and IL-1,, using a novel in vitro model of asthma, focusing on airway smooth muscle contractility. Methods Isolated murine tracheal segments were cultured from 1 to 8 days in the absence and presence of IL-1,. The subsequent contractile responses to sarafotoxin 6c (S6c) (selective agonist for ETB receptor) and sarafotoxin 6b (S6b) (ETA and ETB receptor agonist) were recorded by a myographs system. In all experiments, ETB receptors were desensitized before the contractile response to S6b was recorded. Thus, the response to S6b is only mediated by ETA receptors in the present study. The mRNA expressions for ET-1 and endothelin (ET) receptors were quantified by real-time PCR. Results Organ culture in the presence of IL-1, attenuated the maximal contraction induced by S6c, but not S6b. This reduction was concentration-dependent and was significant after 2, 4 and 8 days of culture. To investigate the mechanisms behind this, inhibitors for endothelin converting enzyme (ECE) phosphoramidon, c-JUN N-terminal kinase (JNK) SP600125, extracellular-signal-regulated kinase 1/2(ERK 1/2) PD98059 and p38 pathway SB203580 were used. Individually, SP600125 and PD98059, but not SB203580, could partly reverse the reduction induced by IL-1,. An additional effect was obtained when SP600125 and PD98059 were combined. The mRNA expressions for ET-1 and ETB receptor were up- and down-regulated, respectively, by IL-1,. Conclusion Presence of IL-1, in the airways attenuate the contractile response mediated via ETB receptors, an effect dependent on ECE, JNK and ERK 1/2 pathways. [source] 5-HYDROXYTRYPTAMINE IN THE CARDIOVASCULAR SYSTEM: FOCUS ON THE SEROTONIN TRANSPORTER (SERT)CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 7 2006Wei Ni SUMMARY 1The function of the serotonin transporter (SERT) is to take up and release serotonin (5-hydroxytyptamine (5-HT)) from cells and this function of SERT in the central nervous system (CNS) is well-documented; SERT is the target of selective serotonin reuptake inhibitors used in the treatment of CNS disorders, such as depression. 2The aim of the present review is to discuss our current knowledge of 5-HT and SERT in the cardiovascular (CV) system, as well as their function in physiological and pathophysiological states. 3The SERT protein has been located in multiple CV tissues, including the heart, blood vessels, brain, platelets, adrenal gland and kidney. Modification of SERT function occurs at both transcriptional and translational levels. The functions of SERT in these tissues is largely unexplored, but includes modulation of cardiac and smooth muscle contractility, platelet aggregation, cellular mitogenesis, modulating neuronal activity and urinary excretion. 4Recent studies have uncovered potential relationships between the expression of SERT gene promoter variants (long (l) or short (s)) with CV diseases. Specifically, the risk of myocardial infarction and pulmonary hypertension is increased with expression of the ll promoter, a variant associated with increased expression and function of SERT. The relationship between promoter variants and other CV diseases has not been investigated. 5Newly available experimental tools, such as pharmacological compounds and genetically altered mice, should prove useful in the investigation of the function of SERT in the CV system. 6In summary, the function of SERT in the CV system is just beginning to be revealed. [source] |