BMD Data (bmd + data)

Distribution by Scientific Domains


Selected Abstracts


Normative data of bone mineral density in an unselected adult Austrian population

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 4 2003
S. Kudlacek
Abstract Background There is increasing evidence that correct interpretation of bone mineral density (BMD) measurements by dual energy X-ray absorptiometry (DEXA) requires a population-specific reference range. We therefore collected data on age-related BMD in a random sample of the normal adult Austrian population to establish an appropriate normative database. Methods We measured BMD by DEXA at five different skeletal sites in 1089 subjects, i.e. 654 females and 435 males, aged between 21,76 years, who had been recruited by 17 centres across Austria. Results Age-related bone loss was observed until age 65 years with significant changes at the lumbar spine (r = ,0·23), total hip (r = ,0·07), trochanter (r = ,0·10), femoral neck (r = ,0·30) and Ward's triangle (r = ,0·40) in the women but only at the femoral neck (r = ,0·23) and at Ward's triangle (r = ,0·40) in the men. When we calculated T scores from the BMD data of the young normal adult study population and used the T score set points according to the WHO classification of osteopenia and osteoporosis, we found that, depending on the skeletal site measured, 7·6,27·4% of the women and 16,41% of the men in our study group had low bone mass, whereas 0·6,2·7% of the female and 0·2,1·0% of the male study population were osteoporotic. However, osteoporosis was indicated in 4,9-fold more females and 5,15-fold more males when we based our estimates on the normative data provided by the manufacturers of the DEXA systems. Conclusion Our data underscore the importance of using a population-specific reference range for DEXA measurements to avoid overdiagnosis of osteoporosis. [source]


Prevalence and trends in low femur bone density among older US adults: NHANES 2005,2006 compared with NHANES III

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2010
Anne C Looker
Abstract Hip fracture incidence appears to be declining in the United States, but changes in bone mineral density (BMD) of the population have not been evaluated. We used femur BMD data from the National Health and Nutrition Examination Survey (NHANES) 2005,2006 to estimate the prevalence of low femoral BMD in adults age 50 years and older and compared it with estimates from NHANES III (1988,1994). Dual-energy X-ray absorptiometry systems (pencil-beam geometry in NHANES III, fan-beam geometry in NHANES 2005,2006) were used to measure femur BMD, and World Health Organization (WHO) definitions of low BMD were used to categorize skeletal status. In 2005,2006, 49% of older US women had osteopenia and 10% had osteoporosis at the femur neck. In men, 30% had femur neck osteopenia and 2% had femur neck osteoporosis. An estimated 5.3 million older men and women had osteoporosis at the femur neck, and 34.5 million more had osteopenia in 2005,2006. When compared with NHANES III, the age-adjusted prevalence of femur neck osteoporosis in NHANES 2005,2006 was lower in men (by 3 percentage units) and women (by 7 percentage units) overall and among non-Hispanic whites. Changes in body mass index or osteoporosis medication use between surveys did not fully explain the decline in osteoporosis. Owing to the increase in the number of older adults in the US population, however, more older adults had low femur neck BMD (osteoporosis + osteopenia) in 2005,2006 than in 1988,1994. Thus, despite the decline in prevalence, the estimated number of affected older adults in 2005,2006 remained high. Copyright © 2010 American Society for Bone and Mineral Research [source]


Low Dietary Riboflavin but Not Folate Predicts Increased Fracture Risk in Postmenopausal Women Homozygous for the MTHFR 677 T Allele,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2008
Nahid Yazdanpanah
Abstract The MTHFR C677T polymorphism is associated with mildly elevated homocysteine levels when folate and/or riboflavin status is low. Furthermore, a mildly elevated homocysteine level is a risk factor for osteoporotic fractures. We studied whether dietary intake of riboflavin and folate modifies the effects of the MTHFR C677T variant on fracture risk in 5035 men and women from the Rotterdam Study. We found that the MTHFR C677T variant interacts with dietary riboflavin intake to influence fracture risk in women. Introduction: The MTHFR C677T polymorphism is associated with mildly elevated homocysteine (Hcy) levels in the presence of low folate and/or riboflavin status. A mildly elevated Hcy level was recently identified as a modifiable risk factor for osteoporotic fracture. We studied whether dietary intake of riboflavin and folate modifies the effects of the MTHFR C677T polymorphism on BMD and fracture risk. Materials and Methods: We studied 5035 individuals from the Rotterdam Study, ,55 yr of age, who had data available on MTHFR, nutrient intake, and fracture risk. We performed analysis on Hcy levels in a total of 666 individuals, whereas BMD data were present for 4646 individuals (2692women). Results: In the total population, neither the MTHFR C677T polymorphism nor low riboflavin intake was associated with fracture risk and BMD. However, in the lowest quartile of riboflavin intake, female 677- T homozygotes had a 1.8 (95% CI: 1.1-2.9, p = 0.01) times higher risk for incident osteoporotic fractures and a 2.6 (95% CI: 1.3-5.1, p = 0.01) times higher risk for fragility fractures compared with the 677-CC genotype (interaction, p = 0.0002). This effect was not seen for baseline BMD in both men and women. No significant influence was found for dietary folate intake on the association between the MTHFR C677T genotype and fracture risk or BMD. In the lowest quartile of dietary riboflavin intake, T-homozygous individuals (men and women combined) had higher (22.5%) Hcy levels compared with C-homozygotes (mean difference = 3.44 ,M, p = 0. 01; trend, p = 0.02). Conclusions: In this cohort of elderly whites, the MTHFR C677T variant interacts with dietary riboflavin intake to influence fracture risk in women. [source]


Quantitative Trait Loci on Chromosomes 2p, 4p, and 13q Influence Bone Mineral Density of the Forearm and Hip in Mexican Americans,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2003
Candace M Kammerer
Abstract We performed a genome scan using BMD data of the forearm and hip on 664 individuals in 29 Mexican-American families. We obtained evidence for QTL on chromosome 4p, affecting forearm BMD overall, and on chromosomes 2p and 13q, affecting hip BMD in men. Introduction: The San Antonio Family Osteoporosis Study (SAFOS) was designed to identify genes and environmental factors that influence bone mineral density (BMD) using data from large Mexican-American families. Materials and Methods: We performed a genome-wide linkage analysis using 416 highly polymorphic microsatellite markers spaced approximately 9.5 cM apart to locate and identify quantitative trait loci (QTL) that affect BMD of the forearm and hip. Multipoint variance components linkage analyses were done using data on all 664 subjects, as well as two subgroups of 259 men and 261 premenopausal women, from 29 families for which genotypic and phenotypic data were available. Results: We obtained significant evidence for a QTL affecting forearm (radius midpoint) BMD in men and women combined on chromosome 4p near D4S2639 (maximum LOD = 4.33, genomic p = 0.006) and suggestive evidence for a QTL on chromosome 12q near locus D12S2070 (maximum conditional LOD = 2.35). We found suggestive evidence for a QTL influencing trochanter BMD on chromosome 6 (maximum LOD = 2.27), but no evidence for QTL affecting the femoral neck in men and women combined. In men, we obtained evidence for QTL affecting neck and trochanter BMD on chromosomes 2p near D2S1780 (maximum LOD = 3.98, genomic p = 0.013) and 13q near D13S788 (maximum LOD = 3.46, genomic p = 0.039), respectively. We found no evidence for QTL affecting forearm or hip BMD in premenopausal women. Conclusion: These results provide strong evidence that a QTL on chromosome 4p affects radius BMD in Mexican-American men and women, as well as evidence that QTL on chromosomes 2p and 13q affect hip BMD in men. Our results are consistent with some reports in humans and mice. [source]


The relationship between breast density and bone mineral density in postmenopausal women

CANCER, Issue 9 2004
Diana S. M. Buist Ph.D., M.P.H.
Abstract BACKGROUND It is not well understood whether breast density is a marker of cumulative exposure to estrogen or a marker of recent exposure to estrogen. The authors examined the relationship between bone mineral density (BMD; a marker of lifetime estrogen exposure) and breast density. METHODS The authors conducted a cross-sectional analysis among 1800 postmenopausal women , 54 years. BMD data were taken from two population-based studies conducted in 1992,1993 (n = 1055) and in 1998,1999 (n = 753). The authors linked BMD data with breast density information collected as part of a mammography screening program. They used linear regression to evaluate the density relationship, adjusted for age, hormone therapy use, body mass index (BMI), and reproductive covariates. RESULTS There was a small but significant negative association between BMD and breast density. The negative correlation between density measures was not explained by hormone therapy or age, and BMI was the only covariate that notably influenced the relationship. Stratification by BMI only revealed the negative correlation between bone and breast densities in women with normal BMI. There was no relationship in overweight or obese women. The same relationship was seen for all women who had never used hormone therapy, but it was not significant once stratified by BMI. CONCLUSIONS BMD and breast density were not positively associated although both are independently associated with estrogen exposure. It is likely that unique organ responses obscure the relationship between the two as indicators of cumulative estrogen exposure. Cancer 2004. © 2004 American Cancer Society. [source]