Home About us Contact | |||
BDNF Polymorphism (bdnf + polymorphism)
Selected AbstractsGenetic variation in brain-derived neurotrophic factor and human fear conditioningGENES, BRAIN AND BEHAVIOR, Issue 1 2009G. Hajcak Brain-derived neurotrophic factor (BDNF) has been implicated in hippocampal-dependent learning processes, and carriers of the Met allele of the Val66Met BDNF genotype are characterized by reduced hippocampal structure and function. Recent nonhuman animal work suggests that BDNF is also crucial for amygdala-dependent associative learning. The present study sought to examine fear conditioning as a function of the BDNF polymorphism. Fifty-seven participants were genotyped for the BDNF polymorphism and took part in a differential-conditioning paradigm. Participants were shocked following a particular conditioned stimulus (CS+) and were also presented with stimuli that ranged in perceptual similarity to the CS+ (20, 40 or 60% smaller or larger than the CS+). The eye blink component of the startle response was measured to quantify fear conditioning; post-task shock likelihood ratings for each stimulus were also obtained. All participants reported that shock likelihood varied with perceptual similarity to the CS+ and showed potentiated startle in response to CS ± 20% stimuli. However, only the Val/Val group had potentiated startle responses to the CS+. Met allele carrying individuals were characterized by deficient fear conditioning , evidenced by an attenuated startle response to CS+ stimuli. Variation in the BDNF genotype appears related to abnormal fear conditioning, consistent with nonhuman animal work on the importance of BDNF in amygdala-dependent associative learning. The relation between genetic variation in BDNF and amygdala-dependent associative learning deficits is discussed in terms of potential mechanisms of risk for psychopathology. [source] Association Between Val66Met Brain-Derived Neurotrophic Factor (BDNF) Gene Polymorphism and Post-Treatment Relapse in Alcohol DependenceALCOHOLISM, Issue 4 2009Marcin Wojnar Background:, The purpose of this study was to examine relationships between genetic markers of central serotonin (5-HT) and dopamine function, and risk for post-treatment relapse, in a sample of alcohol-dependent patients. Methods:, The study included 154 patients from addiction treatment programs in Poland, who met DSM-IV criteria for alcohol dependence. After assessing demographics, severity of alcohol use, suicidality, impulsivity, depression, hopelessness, and severity of alcohol use at baseline, patients were followed for approximately 1 year to evaluate treatment outcomes. Genetic polymorphisms in several genes (TPH2, SLC6A4, HTR1A, HTR2A, COMT, and BDNF) were tested as predictors of relapse (defined as any drinking during follow-up) while controlling for baseline measures. Results:, Of 154 eligible patients, 123 (80%) completed follow-up and 48% (n = 59) of these individuals relapsed. Patients with the Val allele in the Val66Met BDNF polymorphism and the Met allele in the Val158Met COMT polymorphism were more likely to relapse. Only the BDNF Val/Val genotype predicted post-treatment relapse [odds ratio (OR) = 2.62; p = 0.019], and time to relapse (OR = 2.57; p = 0.002), after adjusting for baseline measures and other significant genetic markers. When the analysis was restricted to patients with a family history of alcohol dependence (n = 73), the associations between the BDNF Val/Val genotype and relapse (OR = 5.76, p = 0.0045) and time to relapse (hazard ratio = 4.93, p = 0.001) were even stronger. Conclusions:, The Val66Met BDNF gene polymorphism was associated with a higher risk and earlier occurrence of relapse among patients treated for alcohol dependence. The study suggests a relationship between genetic markers and treatment outcomes in alcohol dependence. Because a large number of statistical tests were conducted for this study and the literature on genetics and relapse is so novel, the results should be considered as hypothesis generating and need to be replicated in independent studies. [source] Prefrontal cognition in schizophrenia and bipolar illness in relation to Val66Met polymorphism of the brain-derived neurotrophic factor genePSYCHIATRY AND CLINICAL NEUROSCIENCES, Issue 1 2006JANUSZ K. RYBAKOWSKI md Abstract, The measures of prefrontal cognition have been used as endophenotype in molecular-genetic studies. Brain-derived neurotrophic factor (BDNF) has been implicated in cognitive functions and in the pathogenesis of major psychoses. This study investigates the relationship between Val66Met polymorphisms of the BDNF gene and prefrontal cognitive function in 129 patients with schizophrenia and 111 patients with bipolar mood disorder. Cognitive tests included the Wisconsin Card Sorting Test (WCST), with such domains as number of perseverative errors, non-perseverative errors, completed corrected categories, conceptual level responses, and set to the first category, and the N-back test, where mean reaction time and percent of correct reactions were measured. Genotyping for Val66Met BDNF polymorphism was done by polymerase chain reaction method. In schizophrenia, no relationship between Val66Met polymorphism of the BDNF gene and the results of the WCST was observed. Patients with Val/Val genotype had a higher percentage of correct reactions in the N-back test than those with the remaining genotypes. Bipolar patients with Val/Val genotype obtained significantly better results on three of five domains of the WCST. No relationship between BDNF polymorphism and the results of the N-back test was found in this group. A limitation to the results could be variable psychopathological state and medication during cognitive testing and lack of Hardy,Weinberg equilibrium in schizophrenia group. Val66Met polymorphism of the BDNF gene may be associated with cognitive performance on the WCST in bipolar mood disorder but not in schizophrenia. An association of this polymorphism with performance on the N-back test in schizophrenia and not in bipolar illness may suggest that in schizophrenia, the BDNF system may be connected with early phases of information processing. [source] The effect of BDNF gene variants on asthma in German childrenALLERGY, Issue 12 2009S. Zeilinger Background:, Allergic inflammation can trigger neuronal dysfunction and structural changes in the airways and the skin. Levels of brain-derived neurotrophic factor (BDNF) are strongly up regulated at the location of allergic inflammation. Aim:, We systematically investigated whether polymorphisms in the BDNF gene influence the development or severity of asthma and atopic diseases. Methods:, The BDNF gene was screened for mutations in 80 chromosomes. Genotyping of six BDNF tagging polymorphisms was performed in a cross-sectional study population of 3099 children from Dresden and Munich (age 9,11 years, ISAAC II). Furthermore, polymorphisms were also investigated in an additional 655 asthma cases analysed with a random sample of 767 children selected from ISAAC II. Associations were calculated via chi-square test and anova using SAS Genetics and spss. Results:, We identified nine polymorphisms with minor allele frequency ,0.03, one of them leading to an amino acid change from Valine to Methionine. In the cross-sectional study population, no significant association was found with asthma or any atopic disease. However, when more severe asthma cases from the MAGIC study were analysed, significant asthma effects were observed with rs6265 (odds ratio 1.37, 95% confidence interval 1.14,1.64, P = 0.001), rs11030101 (OR 0.82, 95%CI 0.70,0.95, P = 0.009) and rs11030100 (OR 1.19, 95%CI 1.00,1.42, P = 0.05). Conclusions:, As in previous studies, effects of BDNF polymorphisms on asthma remain controversial. The data may suggest that BDNF polymorphisms contribute to severe forms of asthma. [source] Association between brain-derived neurotrophic factor gene and a severe form of bipolar disorder, but no interaction with the serotonin transporter geneBIPOLAR DISORDERS, Issue 5 2008Ilona Vincze Background:, Recent data suggest that brain-derived neurotrophic factor (BDNF) and the serotonergic system are involved and interact in major depressive disorder and suicidal behavior (SB). Several family and population-based studies have reported associations between the BDNF gene and serotonin-related genes, specifically the serotonin transporter (5HTT) gene, with bipolar disorder (BD) and SB. However, despite the fact that gene-by-gene interaction between BDNF and 5HTT has been demonstrated in monoamine deficiencies in animals, this kind of interaction has never been tested in humans. Our hypothesis is that some BDNF and 5HTT polymorphisms might confer increased risk for BD and SB and that both genes may interact with each other. Methods:, To test this hypothesis, we genotyped the most common BDNF polymorphisms, G196A (Val66Met), A-633T and BDNF-LCPR, as well as 5HTT (5HTT-LPR), in 447 BD patients and 370 controls. Results:, We replicated the association previously reported between BDNF G196A (Val66Met) polymorphism and BD. We also observed a correlation between the number of G196 alleles and short alleles of 5HTT-LPR and the severity of SB in BD. However, we found no significant interaction between these two markers. Conclusions:, These results suggest that BDNF G196A as well as 5HTT-LPR polymorphisms confer risk for SB in BD, but we did not observe any evidence for an interaction between them. [source] |