Home About us Contact | |||
Bcl-2 Expression (bcl-2 + expression)
Selected AbstractsPro-apoptotic activity of transiently expressed BCL-2 occurs independent of BAX and BAKJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2003T. Subramanian Abstract BCL-2 suppresses apoptosis induced by a wide variety of stimuli in multiple cell types. Most of the in vitro studies that have examined the activity of BCL-2 have employed stable cell lines that ectopically express BCL-2. We have reported that BCL-2 is expressed at high levels in the absence of the 5,- and 3,-UTRs of the Bcl-2 gene and transient high level of expression results in potent cell death (Uhlmann et al., [1998]: JBC 278:17926,17932). Expression of BCL-2 under the transcriptional control of the cognate 5,- and 3,-UTRs express lower levels of BCL-2 and does not cause cell death. Our present results suggest that in contrast to BCL-2, transient expression of BCL-xL does not induce cell death and coexpression of BCL-xL with the pro-apoptotic BCL-2 does not suppress cell death. The pro-apoptotic activity of BCL-2 appears to involve activation of the cytochrome c/caspase 9/caspase 3 pathway. Elevated levels of BCL-2 expression results in N-terminal cleavage of BCL-2 at a novel site different from a previously identified caspase cleavage site at Asp 34 by a non-caspase protease. Transient expression of a BCL-2 mutant lacking aa 51,85 within the loop region induces efficient cell death and N-terminal cleavage of BCL-2 while a different deletion mutant lacking aa 30,91 induces reduced levels of cell death in the absence of BCL-2 cleavage suggesting that N-terminal processing of BCL-2 may be an amplification event in BCL-2-mediated cell death. Overexpression of BCL-2 in a Bax-null human colon cancer cell line (HCT116Bax,/,) induces efficient cell death. The pro-apoptotic activity of BCL-2 is also observed in a Bax-null cells in which BAK expression is inhibited by stable RNAi expression. Our results suggest that BCL-2 contains an intrinsic pro-apoptotic activity and can induce apoptosis independent of BAX and BAK under specific conditions. © 2003 Wiley-Liss, Inc. [source] Inhibition of Alcohol-Associated Colonic Hyperregeneration by ,-Tocopherol in the RatALCOHOLISM, Issue 1 2003P. Vincon Background: Chronic alcohol consumption results in colorectal mucosal hyperregeneration, a condition associated with an increased risk for colorectal cancer. Possible mechanisms may involve the effects of acetaldehyde and/or free radicals generated during alcohol metabolism. Vitamin E is part of the antioxidative defense system, and its concentration is decreased or its metabolic utilization increased in various tissues after chronic alcohol consumption. We wondered whether ,-tocopherol supplementation may prevent ethanol-induced colorectal cell cycle behavior and whether these changes were related to alterations in protein synthesis. Methods: Five groups of male Wistar rats, each consisting of 14 animals, received liquid diets as follows: group 1, alcohol; group 2, alcohol +,-tocopherol; group 3, control (i.e., isocaloric glucose); group 4; control (i.e., isocaloric glucose) +,-tocopherol. Group 5 was fed a solid chow diet ad libitum. After 4 weeks of feeding, immunohistology was performed with anti-proliferating cell nuclear antigen (PCNA) or anti-BCL2 antibodies. Fractional (ks) and absolute (Vs) rates of protein synthesis and rates of protein synthesis relative to RNA (kRNA) and DNA (kDNA) were measured with a flooding dose of L-[4- 3H] phenylalanine with complementary analysis of protein and nucleic acid composition. Results: The PCNA index was increased significantly in the colon after ethanol administration compared with controls (ethanol, 10.3 ± 2.3 vs. control, 6.51 ± 1.6% PCNA positive cells, p < 0.05), although neither the protein, RNA, and DNA concentrations nor ks, kRNA, kDNA, and Vs were affected. This increase in PCNA index was significantly diminished by coadministration of ,-tocopherol (ethanol +, - tocopherol, 7.86 ± 1.71% PCNA positive cells, p < 0.05) without significant alterations in protein synthetic parameters. A similar result was obtained for the PCNA index in the rectal mucosa (ethanol, 14.6 ± 4.4 vs. control, 12.1 ± 4.2% PCNA positive cell), although this did not reach statistical significance. Neither ethanol nor , - tocopherol feeding had any significant effect on BCL-2 expression in the colorectal mucosa. As with the colon, protein synthetic parameters in the mucosa were not affected by alcohol feeding at 4 weeks. These effects on colonic cell turnover without corresponding changes in protein synthesis thus represent a specific localized phenomenon rather than a general increase in anabolic processes in the tissue and reaffirm the hyperregenerative properties of chronic alcohol consumption. Conclusions: Alcohol-associated hyperproliferation could be prevented, at least in part, by supplementation with ,-tocopherol. This may support the hypothesis that free radicals are involved in the pathogenesis of alcohol-associated colorectal hyperproliferation. [source] Limited prognostic value of tissue protein expression levels of BCl-2 in Danish ovarian cancer patients: from the Danish ,MALOVA' ovarian cancer studyAPMIS, Issue 8 2010ESTRID V.S. Høgdall Høgdall EVS, Christensen L, Kjaer SK, Blaakaer J, Christensen IJ, Høgdall CK. Limited prognostic value of tissue protein expression levels of BCl-2 in Danish ovarian cancer patients. APMIS 2010; 118: 557,64. The purpose of the study was to determine the expression of BCl-2 in epithelial ovarian tumors and to correlate expression levels with selected clinicopathologic parameters, time to progression and prognosis of the disease. Using tissue arrays (TA), we analyzed BCl-2 expression in tissues from 191 women diagnosed with low malignant potential ovarian tumors (LMP) and from 582 patients diagnosed with ovarian cancer (OC). Using 30% as cutoff level for BCl-2 overexpression, 5% of LMPs were positive with a higher proportion of serous ovarian tumor of LMP, compared to mucinous ovarian tumor of LMP (p = 0.02). Women with a BCl-2-positive LMP tumor were older than women with a BCl-2 negative tumor (p = 0.02). Ten percent of OCs were positive for BCl-2 expression (,30%). No significant association was found between BCl-2 expression levels and histologic type of tumors (serous vs mucinous, p = 0.19). A 30% cutoff value or a percentage scale showed that BCl-2 expression had no prognostic value, both in univariate and in multivariate survival analyses. No difference in time to progression was observed between patients with BCl-2-positive and negative tumors. These data suggest that BCl-2 expression may not be of important clinical value in the treatment of Danish OC patients. [source] NF-,B and apoptosis in colorectal tumourigenesisEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 5 2007M. M. Aranha Abstract Background, Nuclear factor-,B (NF-,B) may play an important role in colorectal tumourigenesis, controlling cell cycle and apoptosis gene expression. In addition, imbalances between cell proliferation and cell death are thought to underlie neoplastic development. The aims of this study were to investigate apoptosis and expression of several apoptosis-related proteins, and to determine correlations with colorectal tumour progression. Materials and methods, Apoptosis was evaluated by the TUNEL assay in 48 patient samples, including adenomas, adenocarcinomas and adjacent normal mucosas. Immunohistochemistry was performed for Bcl-2 and NF-,B. Expression levels of p53, Bax and I,B proteins were determined by immunoblotting. Cultured human colon cancer cells were used to evaluate NF-,B expression and nuclear translocation by immunocytochemistry and immunoblotting. Results, Apoptosis and NF-,B immunoreactivity were significantly higher in tumour tissue compared with normal mucosa (P < 0·01), increasing in association with histological tumour progression (P < 0·01). Bcl-2 was consistently higher in normal mucosa (P < 0·01) and inversely correlated with the percentage of apoptosis (P < 0·01). Phosphorylated p53 and Bax levels were similar in tumour tissue and normal mucosa; however, the NF-,B inhibitor, I,B, tended to decrease in tumours. In vitro, nuclear translocation of NF-,B was greater in proliferative than in resting phases of colon cancer cells. Conclusions, NF-,B expression and apoptosis are increased from adenoma to poorly differentiated adenocarcinoma tissues. Apoptosis is correlated with suppression of Bcl-2 expression, but appears to proceed through a p53- and Bax-independent pathway. Activation of NF-,B may play an important role in colorectal tumour progression. [source] Prognostic significance of Bcl-2 and p53 expression in advanced laryngeal squamous cell carcinomaHEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 4 2001Michael Friedman MD Abstract Background Proteins regulating the cell cycle and cell death are frequently abnormally expressed in cancer. Several of these, particularly p53 and Bcl-2, have been widely suggested as possible prognostic markers in diverse human malignancies. Their role in predicting outcome in squamous cell carcinomas of the head and neck is unclear and may depend on the location, stage, and treatment of the tumor. Methods To assess this question specifically for advanced squamous cell carcinoma of the larynx, we studied 69 patients with stage III or IV tumors, all but 6 of whom were treated with surgery plus postoperative irradiation by a single physician. We studied the patients retrospectively to test the association between expression of Bcl-2 and p53, as assessed by immunohistochemistry, with treatment outcome and survival. Results Twenty of the 69 patients died from their tumor (poor outcome); the rest were alive and tumor free at the last follow-up or died of unrelated causes without clinical tumor recurrence (good outcome). Fourteen tumors had detectable Bcl-2 expression, including 8 scored as overexpressors. Thirty-nine tumors overexpressed p53. Expression of neither Bcl-2 nor p53 was associated with outcome, overall survival, or disease-free survival. Only tumor stage was significantly associated with outcome and disease-free survival. Conclusion These data indicate that assessing expression of p53 or Bcl-2 is unlikely to be prognostically useful for surgically treated advanced laryngeal carcinoma. © 2001 John Wiley & Sons, Inc. Head Neck 23: 280,285, 2001. [source] Activated Stat3 expression in gestational trophoblastic disease: correlation with clinicopathological parameters and apoptotic indicesHISTOPATHOLOGY, Issue 2 2008H Y Chan Aims:, To assess the expression profile of the activated form of signal transducer and activator of transcription (Stat)3 in gestational trophoblastic disease (GTD) and correlate the findings with clinicopathological parameters. Methods and results:, By immunohistochemistry, both cytoplasmic and nuclear expression of p-Stat3-Ser727 was demonstrated in 88 trophoblastic tissues, including placentas and GTD. Nuclear immunoreactivity of p-Stat3-Ser727 was significantly higher in hydatidiform mole (HM) (P < 0.001) and choriocarcinoma (P = 0.009) when compared with normal placentas. Placental site trophoblastic tumours (PSTT) and epithelioid trophoblastic tumours (ETT) also demonstrated higher nuclear p-Stat3-Ser727 expression than their normal trophoblast counterparts. Higher p-Stat3-Ser727 expression was confirmed in choriocarcinoma cell lines, JEG-3 and JAR, than in a normal trophoblast cell line, with both nuclear and cytoplasmic fractions demonstrated by immunoblotting. Spontaneously regressed HM showed significantly increased nuclear and cytoplasmic p-Stat3-Ser727 immunoreactivity over those that developed gestational trophoblastic neoplasia (GTN) (P = 0.013, P = 0.039). There was a significant positive and inverse correlation between nuclear p-Stat3-Ser727 immunoreactivity and apoptotic indices [terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labelling and M30 CytoDeath antibody] (P = 0.001, P < 0.001, Spearman's , test) and Bcl-2 expression (P = 0.034), respectively. Conclusions:, p-Stat3-Ser727 plays a role in the pathogenesis of GTD, probably through the regulation of apoptosis. p-Stat3-Ser727 immunoreactivity is a potential marker in predicting GTN in HM. [source] Cyclooxygenase-2 expression correlates with phaeochromocytoma malignancy: evidence for a Bcl-2-dependent mechanismHISTOPATHOLOGY, Issue 6 2007I S Cadden Aims:, Phaeochromocytomas are rare but potentially life-threatening neuroendocrine tumours of the adrenal medulla or sympathetic nervous system ganglia. There are no histological features which reliably differentiate benign from malignant phaeochromocytomas. The aim of the study was to evaluate cyclooxygenase (COX)-2 and Bcl-2 as tissue-based biomarkers of phaeochromocytoma prognosis. Methods and results:, COX-2 and Bcl-2 expression were examined immunohistochemically in tissue from 41 sporadic phaeochromocytoma patients followed up for a minimum of 5 years after diagnosis. There was a statistically significant association between COX-2 histoscore (intensity × proportion) and the development of tumour recurrence or metastases (P = 0.006). A significant relationship was observed between coexpression of COX-2 and Bcl-2 in the primary tumour and the presence of recurrent disease (P = 0.034). A highly significant association was observed between (i) tumour-associated expression of these two oncoproteins (P = 0.001) and (ii) COX-2 histoscore and the presence of Bcl-2 expression (P = 0.002). COX regression analysis demonstrated no significant relationship between (i) the presence or absence of either COX-2 or Bcl-2 and patient survival or (ii) COX-2 histoscore and patient survival. Conclusions:, COX-2 and Bcl-2 may promote phaeochromocytoma malignancy, and these oncoproteins may be valuable surrogate markers of an aggressive tumour phenotype. [source] Gambogic acid induces apoptosis by regulating the expression of Bax and Bcl-2 and enhancing caspase-3 activity in human malignant melanoma A375 cellsINTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 2 2009Xiaoyuan Xu Objectives, To investigate the effect of a Chinese traditional medicine, gambogic acid (GA), on human malignant melanoma (MM) A375 cells and to study the mechanism of apoptosis induced by GA. Methods, A375 cells were treated with GA at different doses and for different times, and their proliferation and viability were detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis induced by GA in A375 cells was observed by annexin-V/propidium iodide doubling staining flow cytometry assay and Hoechst staining. To further determine the molecular mechanism of apoptosis induced by GA, the changes in expression of Bcl-2 and Bax were detected by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot, and caspase-3 activity was measured by fluorescence resonance energy transfer (FRET) probe. Results, After incubation with GA, A375 cell proliferation was dramatically inhibited in a dose-dependent manner. After these cells had been exposed to GA for 24, 36 and 48 h, the IC50 values were 1.57 ± 0.05, 1.31 ± 0.20, and 1.12 ± 0.19 µg/mL, respectively. Treatment of A375 cells with GA (2.5,7.5 µg/mL) for 36 h resulted in an increased number of early apoptotic cells, which ranged from 27.6% to 41.9%, in a dose-dependent manner, compared with only 3.5% apoptotic cells in the non-GA-treated group. An increase in Bax and decrease in Bcl-2 expression were found by real-time RT-PCR and Western blot. Caspase-3 activity was increased in a dose-dependent manner, observed by FRET probe. Conclusion, GA can inhibit the proliferation of A375 cells and induce their apoptosis, which may be related to the up-regulation of the Bax/Bcl-2 ratio and caspase-3 activity. [source] Apoptosis in prostate cancer: Bax correlation with stageINTERNATIONAL JOURNAL OF UROLOGY, Issue 4 2005ZAHRA AMIRGHOFRAN Abstract Background:, Dysregulation of apoptosis may contribute to the process of prostate tumorigenesis by reducing the rate of cell death. Bcl-2 and bax are important molecules involved in the regulation of apoptosis. The aim of the present study is to examine apoptosis and related regulatory molecular markers in a group of Iranian patients with prostate cancer. Methods:, Paraffin-embedded tissues from 50 patients of prostate carcinoma were examined for the expression of bcl-2 antiapoptotic and bax proapoptotic markers and also proliferation marker, Ki-67, by immunohistochemistry. Detection of apoptotic cells was performed using TUNEL method. Correlation between apoptotic index, proliferation index and bcl-2 and bax expression with stage, pathological grade and Gleason score was determined. Results:, Apoptosis was detected in 12% of prostate cancers. No correlation was observed between apoptosis and differentiation status of carcinoma. Bcl-2 expression was detected in 21 of samples. A significant correlation between bcl-2 expression and Ki-67 staining index (r = 0.349, P = 0.012) was observed. High bax protein expression was shown in our study. We found a significant correlation between bax expression and stage of carcinoma (r = 0.388, P = 0.031), but not with the apoptosis index, suggesting the presence of a non-functional bax protein or the role of other proapoptotic molecules. Conclusion:, The patients in the present study showed a different pattern of apoptosis positivity compared to other reports. Bax expression may be a useful marker for prognosis of prostate cancer. [source] Gene and protein expressions in human cord blood cells after exposure to acrylonitrileJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 4 2005Cristina Diodovich Abstract Acrylonitrile is a very high volume industrial chemical used primarily in the manufacture of plastics and rubber, which displays a pronounced acute toxicity and may be carcinogenic. The damage to the hematopoietic function by acrylonitrile may result from interference with cytokine production and cytokine receptor binding. Our present data show that acrylonitrile modulates the expression of some genes implicated in cell differentiation, cell-cycle progression, and clonogenic potential of human cord blood cells. A macroarray hybridization analysis showed that expression of the CXCR4, MCP-1, and MRP8 genes was modified by acrylonitrile exposure. Moreover, the acrylonitrile cell target seems to be the myeloid compartment, as assessed by a CFU-GM assay. In particular, the downregulation of CXCR4, MCP1, and MRP8 can be responsible for the observed reduction of cell proliferation and clonogenic capability of CFU-GM precursors. A Western blot assay showed an acrylonitrile-dependent induction of Bax, while Bcl-2 expression changed only after 48 h of chemical exposure. Bax was overexpressed in respect to Bcl-2, and this fact can be responsible for the induction in cell death after 24 h of treatment. C-fos and c-jun were also downregulated after 24 h and 6 h of treatment, respectively. © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 19:204,212, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20090 [source] Human neural stem cell transplantation attenuates apoptosis and improves neurological functions after cerebral ischemia in ratsACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 9 2009P. ZHANG Background: Neuroprotection is a major therapeutic approach for ischemic brain injury. We investigated the neuroprotective effects induced by transplantation of human embryonic neural stem cells (NSCs) into the cortical penumbra 24 h after focal cerebral ischemia. Methods: NSCs were prepared from human embryonic brains obtained at 8 weeks of gestation. Focal cerebral ischemia was induced in adult rats by permanent occlusion of the middle cerebral artery. Animals were randomly divided into two groups: NSCs-grafted group and medium-grafted group (control). Infarct size was assessed 28 days after transplantation by hematoxylin and eosin staining. Neurological severity scores were evaluated before ischemia and at 1, 7, 14, and 28 days after transplantation. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and immunohistochemical analysis of Bcl-2 and Bax were performed at 7, 14, and 28 days after transplantation. Results: Physiological parameters of the two groups were comparable, but not significantly different. NSC transplantation significantly improved neurological function (P<0.05) but did not reduce the infarct size significantly (P>0.05). Compared with the control, NSC transplantation significantly reduced the number of TUNEL- and Bax-positive cells in the penumbra at 7 days. Interestingly, the number of Bcl-2-positive cells in the penumbra after NSC transplantation was significantly higher than that after medium transplantation (P<0.05). Conclusions: The results indicate that NSC transplantation has anti-apoptotic activity and can improve the neurological function; these effects are mediated by the up-regulation of Bcl-2 expression in the penumbra. [source] Effect of Osteoblast-Targeted Expression of Bcl-2 in Bone: Differential Response in Male and Female Mice,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2005Alexander G Pantschenko Abstract Transgenic mice (Col2.3Bcl-2) with osteoblast-targeted human Bcl-2 expression were established. Phenotypically, these mice were smaller than their wildtype littermates and showed differential effects of the transgene on bone parameters and osteoblast activity dependent on sex. The net effect was an abrogation of sex differences normally observed in wildtype mice and an inhibition of bone loss with age. Ex vivo osteoblast cultures showed that the transgene had no effect on osteoblast proliferation, but decreased bone formation. Estrogen was shown to stimulate endogenous Bcl-2 message levels. These studies suggest a link between Bcl-2 and sex regulation of bone development and age-related bone loss. Introduction: Whereas Bcl-2 has been shown to be an important regulator of apoptosis in development, differentiation, and disease, its role in bone homeostasis and development is not well understood. We have previously showed that the induction of glucocorticoid-induced apoptosis occurred through a dose-dependent decrease in Bcl-2. Estrogen prevented glucocorticoid-induced osteoblast apoptosis in vivo and in vitro by preventing the decrease in Bcl-2 in osteoblasts. Therefore, Bcl-2 may be an important regulator of bone growth through mechanisms that control osteoblast longevity and function. Materials and Methods: Col2.3Bcl-2 mice were developed carrying a 2.3-kb region of the type I collagen promoter driving 1.8 kb of human Bcl-2 (hBcl-2). Tissue specific expression of hBcl-2 in immunoassays validated the transgenic animal model. Histomorphometry and DXA were performed. Proliferation, mineralization, and glucocorticoid-induced apoptosis were examined in ex vivo cultures of osteoblasts. The effect of estrogen on mouse Bcl-2 in ex vivo osteoblast cultures was assayed by RT-PCR and Q-PCR. Results and Conclusions: Two Col2.3Bcl-2 (tg/+) founder lines were established and appeared normal except that they were smaller than their nontransgenic wildtype (+/+) littermates at 1, 2, and 6 months of age, with the greatest differences at 2 months. Immunohistochemistry showed hBcl-2 in osteoblasts at the growth plate and cortical surfaces. Nontransgenic littermates were negative. Western blots revealed hBcl-2 only in type I collagen-expressing tissues. Histomorphometry of 2-month-old mice showed a significant decrease in tg/+ calvaria width with no significant differences in femoral trabecular area or cortical width compared with +/+. However, tg/+ males had significantly more trabecular bone than tg/+ females. Female +/+ mice showed increased bone turnover with elevated osteoblast and osteoclast parameters compared with +/+ males. Col2.3Bcl-2 mice did not show such significant differences between sexes. Male tg/+ mice had a 76.5 ± 1.5% increase in ObS/BS with no significant differences in bone formation rate (BFR) or mineral apposition rate (MAR) compared with male +/+ mice. Transgenic females had a significant 48.4 ± 0.1% and 20.1 ± 5.8% decrease in BFR and MAR, respectively, compared with +/+ females. Osteoclast and osteocyte parameters were unchanged. By 6 months, femurs from female and male +/+ mice had lost a significant amount of their percent of trabecular bone compared with 2-month-old mice. There was little to no change in femoral bone in the tg/+ mice with age. Ex vivo cultures of osteoblasts from +/+ and Col2.3Bcl-2 mice showed a decrease in mineralization, no effect on proliferation, and an inhibition of glucocorticoid-induced apoptosis in Col2.3Bcl-2 cultures. Estrogen was shown to increase mouse Bcl-2 transcript levels in osteoblast cultures of wildtype mice, supporting a role for Bcl-2 in the sex-related differences in bone phenotype regulated by estrogen. Therefore, Bcl-2 differentially affected bone phenotype in male and female transgenic mice, altered bone cell activity associated with sex-related differences, and decreased bone formation, suggesting that apoptosis is necessary for mineralization. In addition, Bcl-2 targeted to mature osteoblasts seemed to delay bone development, producing a smaller transgenic mouse compared with wildtype littermates. These studies suggest that expression of Bcl-2 in osteoblasts is important in regulating bone mass in development and in the normal aging process of bone. [source] Spatial Distribution of Bax and Bcl-2 in Osteocytes After Bone Fatigue: Complementary Roles in Bone Remodeling Regulation?,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2002Olivier Verborgt Abstract Osteocyte apoptosis appears to play a key role in the mechanism by which osteoclastic resorption activity targets bone for removal, because osteocyte apoptosis occurs in highly specific association with microdamage and subsequent remodeling after fatigue. However, beyond terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-biotin nick end labeling (TUNEL) assay, little is known about the mechanisms controlling osteocyte apoptosis in vivo. In the current studies, expression of Bax, a proapoptotic gene product, and Bcl-2, an antiapoptotic gene product, was determined in osteocytes of fatigued rat bone using immunocytochemical staining and compared with TUNEL staining patterns. Bax and Bcl-2 were evident in osteocytes by 6 h after loading. Moreover, Bax and Bcl-2 in osteocytes were expressed differently as a function of distance from microdamage sites. The peak of Bax expression and TUNEL+ staining in osteocytes was observed immediately at the microcrack locus, which is where bone resorption occurs in this system; in contrast, Bcl-2 expression, the antiapoptotic signal, reached its greatest level at some distance (1-2 mm) from microcracks. These data suggest that near sites of microinjury in bone, those osteocytes that do not undergo apoptosis are prevented from doing so by active protection mechanisms. Moreover, the zone of apoptotic osteocytes around microcracks was effectively "walled in" by a surrounding halo of surviving osteocytes actively expressing Bcl-2. Thus, the expression pattern of apoptosis-inhibiting gene products by osteocytes surrounding the apoptotic osteocyte at microdamage sites also may provide important signals in the guidance of resorption processes that occur in association with osteocyte apoptosis after fatigue. [source] Inhibition of constitutive activity of nuclear transcription factor kappaB sensitizes doxorubicin-resistant cells to apoptosisJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2009Charitha Gangadharan Abstract Doxorubicin is one of the most effective agents used in the treatment of various tumors. Its use is restricted by the development of resistance to apoptosis, the mechanism of which is not fully understood. Nuclear transcription factor kappaB (NF-,B) has been shown both to block apoptosis and to promote cell proliferation, and hence has been considered as an important target for anticancer drug development. We found that in wild type and Dox-revertant MCF-7 cells, Doxorubicin induced NF-,B was transient and Dox-resistant cells showed high basal activity of NF-,B and expression of genes dependent on it. Moreover, in resistant cells Doxorubicin was unable to induce apoptosis as detected by assays for reactive oxygen intermediates generation, lipid peroxidation, cytotoxicity, PARP degradation and Bcl-2 expression. High basal expressions of multi-drug resistant protein and transglutaminase were found in Dox-resistant cells and inhibition of NF-,B decreased those amounts and also sensitized these cells by Doxorubicin. These observations collectively suggest that high NF-,B activity confers resistance to Doxorubicin and its inhibition potentiates apoptosis. This study indicates that NF-,B plays an important role in chemoresistance and establishes the fact that inhibition of NF-,B will be a novel approach in chemotherapy. J. Cell. Biochem. 107: 203,213, 2009. © 2009 Wiley-Liss, Inc. [source] FAP-1-mediated activation of NF-,B induces resistance of head and neck cancer to fas-induced apoptosisJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2007Eva Wieckowski Abstract Molecular mechanisms responsible for tumor resistance to apoptosis often involve the Fas/FasL pathway. While squamous cell carcinomas of the head and neck (SCCHN) express both Fas and FasL, their resistance to self-induced apoptosis or apoptosis mediated by Fas agonistic antibody (CH-11Ab) was independent of the level of Fas surface expression or the presence of soluble Fas in supernatants of primary or metastatic SCCHN cell lines. By in vitro immunoselection, using PCI-15A cell line treated with successive cycles of CH-11 Ab, Fas-resistant sublines with the parental genotype were selected. Such sublines failed to cleave caspase-8 upon Fas engagement and were resistant to CH-11 Ab, although they remained sensitive to VP-16 or staurosporin. In the presence of cycloheximide, the selected SCCHN sublines become susceptible to CH-11 Ab, and showed cleavage of caspase-8, suggesting that apoptosis resistance was mediated by an inhibitory protein(s) acting upstream of caspase-8. Overexpression of Fas-associated phosphatase 1 (FAP-1), but not cellular FLICE-inhibitory protein (cFLIP) in SCCHN sublines was documented by Western blots and RT-PCR analyses. The FAP-1+ selected sublines also downregulated cell surface Fas. A high phosphorylation level of I,B,, NF,B activation and upregulation of Bcl-2 expression were observed in the FAP-1+ sublines. Treatment with the phosphatase inhibitor, orthovanadate, or silencing of FAP-1 with siRNA abolished their resistance to apoptosis, suggesting that FAP-1 phosphatase activity could be responsible for NF-,B activation and resistance of SCCHN cells to Fas-mediated apoptosis. J. Cell. Biochem. 100: 16,28, 2007. © 2006 Wiley-Liss, Inc. [source] Paradoxical enhancement of oxidative cell injury by overexpression of heme oxygenase-1 in an anchorage-dependent cell ECV304JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2004Keiko Maruhashi Abstract There has been increasing evidence suggesting the potent anti-inflammatory roles of heme oxygenase-1 (HO-1) in protecting renal tubular epithelial cells, vascular endothelial cells, and circulating monocytes. Based on these findings, novel therapeutic interventions have been proposed to control the expression of endothelial HO-1 levels to ameliorate various vascular diseases. We evaluated the effect of HO-1 gene transfer into an anchorage-dependent cell, ECV304. Effect of HO-1 production on the cell injury induced by hydrogen peroxide was evaluated after hemin stimulation and after HO-1 gene transfection. Morphological changes and the induction of various anti-apoptotic proteins were examined at the same time. Levels of HO-1 expression were variable in different clones of HO-1-transfected ECV304 cells. Among these, the clones with moderate levels of HO-1 expression were significantly more resistant to oxidative stress. In contrast, those with the highest levels of HO-1 exhibited paradoxically enhanced susceptibility to oxidative injury. Interestingly, the cell survival after oxidative stress was in parallel with the levels of Bcl-2 expression and of fibronectin receptor, ,5 integrin. It is suggested from these results, that excessive HO-1 not only leads to enhanced cell injury, but also prolongs the repair process of the injured endothelial tissue. However, HO-1 reduces the oxidative cell injury and protects the endothelial cells, if its expression is appropriately controlled. © 2004 Wiley-Liss, Inc. [source] Effect of all-trans retinoic acid on apoptosis and expression of regulatory genes (Bcl-2, Fas, ICE) in experimentally induced gastric epithelial cell dysplasia in ratsJOURNAL OF DIGESTIVE DISEASES, Issue 1 2001Cui Rutao OBJECTIVE: To study the mechanism and effect of all-trans retinoic acid on apoptosis and the expression of Bcl-2, Fas and ICE in experimentally induced dysplastic gastric epithelial cells. METHODS: Apoptosis and expression of Bcl-2, Fas and ICE in gastric epithelial cells was studied using the terminal dUTP nucleotide end-labeling (TUNEL) technique. The immunohistochemistry of Wistar rats enrolled in three groups was studied: group 1, blank controls; group 2, dysplasia induced by N -methyl- N -nitro- N -nitrosoguanidine (MNNG) and then treated with all-trans retinoic acid; and group 3, dysplasia induced by MNNG and treated with a placebo. RESULTS: In the three groups, the rates of dysplasia were 0, 26.7 and 73.3%; the apoptosis indices were 8.3 ± 3.1, 7.8 ± 2.6 and 2.2 ± 0.4; the expression of Bcl-2 was 13.3, 33.3 and 66.7%; and overexpression of Bcl-2 was 6.7, 6.7 and 33.3%, respectively. There were significant differences between group 2 and group 3 (P < 0.05), but no significant differences were found between group 2 and group 1 (P > 0.05). The expression rates of Fas were 46.7, 40 and 6.7%; the overexpression rates were 13.3, 26.7 and 13.3%, respectively; the expression rates of ICE were 20, 60 and 13.3%; the overexpression rates were 0, 13.3 and 6.7% in the three groups, respectively. The expression rates of Fas and ICE in group 2 were significantly different from that of group 3 (P < 0.05), but there were no significant differences in overexpression rates between group 2 and group 3. No significant differences were found either in expression or overexpression of Fas and ICE between group 2 and group 1. CONCLUSIONS: These results suggest that all-trans retinoic acid inhibits Bcl-2 expression, promotes Fas expression, enhances ICE expression and gastric mucosal epithelial cell apoptosis, and thus may reverse or inhibit the progression to cancer. [source] Optimization of in vitro expansion of macaque CD4+ T cells using anti-CD3 and co-stimulation for autotransfusion therapyJOURNAL OF MEDICAL PRIMATOLOGY, Issue 4-5 2006Nattawat Onlamoon Abstract Background, Our laboratory has previously shown that adoptive transfer of in vitro -expanded autologous purified polyclonal CD4+ T cells using anti-CD3/CD28-coated beads induced antiviral responses capable of controlling SIV replication in vivo. Methods, As CD4+ T cells comprise several phenotypic and functional lineages, studies were carried out to optimize the in vitro culture conditions for maximal CD4+ T-cell expansion, survival and delineate the phenotype of these expanded CD4+ T cells to be linked to maximal clinical benefit. Results and Conclusions, The results showed that whereas anti-monkey CD3,/, was able to induce T-cell proliferation and expansion in combination with antibodies against multiple co-stimulatory molecules, monkey CD3, cross reacting antibodies failed to induce proliferation of macaque CD4+ T cells. Among co-stimulatory signals, anti-CD28 stimulation was consistently superior to anti-4-1BB, CD27 or ICOS while the use of anti-CD154 failed to deliver a detectable proliferation signal. Increasing the relative anti-CD28 co-stimulatory signal relative to anti-CD3 provided a modest enhancement of expansion. Additional strategies for optimization included attempts to neutralize free radicals, enhancement of glucose uptake by T cells or addition of T-cell stimulatory cytokines. However, none of these strategies provided any detectable proliferative advantage. Addition of 10 autologous irradiated feeder cells/expanding T cell provided some enhancement of expansion; however, given the high numbers of T cell needed, this approach was deemed impractical and costly, and lower ratios of feeder to expanding T cells failed to provide such benefit. The most critical parameter for efficient expansion of purified CD4+ T cells from multiple monkeys was the optimization of space and culture conditions at culture inception. Finally, anti-CD3/28-expanded CD4+ T cells uniformly exhibited a central memory phenotype, absence of CCR5 expression, marked CXCR4 expression in vitro, low levels of caspase 3 but also of Bcl-2 expression. [source] PACAP and C2-ceramide generate different AP-1 complexes through a MAP-kinase-dependent pathway: involvement of c-Fos in PACAP-induced Bcl-2 expressionJOURNAL OF NEUROCHEMISTRY, Issue 4 2006Nicolas Aubert Abstract The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits C2-ceramide-induced cell death through blockade of the mitochondrial apoptotic pathway in rat cerebellar granule neurones. However, the gene induction processes and transcription factors involved in the anti-apoptotic effect of PACAP remain unknown. Here, we show that PACAP and C2-ceramide activate activator protein-1 (AP-1) DNA binding in a dose- and time-dependent manner, but generate different AP-1 dimers. Thus, PACAP increased the proportion of c-Fos and Jun D while C2-ceramide increased c-Jun and reduced c-Fos in AP-1 complexes. In addition, PACAP strongly activated c-Fos gene expression while C2-ceramide markedly increased c-Jun phosphorylation. The effect of PACAP on c-Fos expression was blocked by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) inhibitor, U0126, while phosphorylation of c-Jun induced by C2-ceramide was abrogated by the protein phosphatase 2A (PP2A) inhibitor, okadaic acid. Transfection of immature granule cells with c-Fos siRNA, which strongly reduced basal and PACAP-stimulated levels of the protein, totally prevented the stimulatory effect of PACAP on Bcl-2 expression. The present study demonstrates that AP-1 complexes containing c-Fos mediate the effect of PACAP on Bcl-2 gene expression in cerebellar granule neurones. Our data also indicate that different AP-1 dimers are associated with the pro-apoptotic effect of C2-ceramide and the anti-apoptotic effect of PACAP. [source] Activated JNK brings about accelerated apoptosis of Bcl-2-overexpressing C6 glioma cells on treatment with tamoxifenJOURNAL OF NEUROCHEMISTRY, Issue 1 2005Madhavi S. Moodbidri Abstract Tamoxifen causes apoptosis of malignant glial cells at a concentration that does not kill normal astrocytes. C6 glioma cells were stably transfected with a vector expressing Bcl-2 under the control of metallothionin promoter. Low leaky Bcl-2 expression offered complete protection against tamoxifen-induced apoptosis. High Bcl-2 levels, on the other hand, accelerated the apoptosis, with Bcl-2-overexpressing clones dying within 48 h of tamoxifen treatment as compared to 6 days for parental C6 cells. Overexpressed Bcl-2 is localized primarily in mitochondria and to a much lower extent in endoplasmic reticulum (ER). Only a minor fraction of the overexpressed Bcl-2 gets phosphorylated in tamoxifen-treated cells and the phosphorylation does not affect its binding to Bax. Tamoxifen treatment of Bcl-2-overexpressing clones was found to result in activation of c-Jun N-terminal kinase (JNK) and p38 kinase. Inhibition of JNK but not p38 kinase completely abrogated the accelerated apoptosis. Constitutively expressed endogenous c-Jun was found to be phosphorylated, resulting in increased activator protein 1 (AP-1) DNA-binding activity. Expression of Fas ligand (FasL), an AP-1 transcriptional target, increased during accelerated cell death. This presumably brought about activation of caspase 8, as inhibition of caspase 8 blocked the apoptosis. The JNK/c-Jun/AP-1/FasL pathway could be considered as a potential target for the therapy of gliomas. [source] Sex Differences and the Roles of Sex Steroids in Apoptosis of Sexually Dimorphic Nuclei of the Preoptic Area in Postnatal RatsJOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2009S. Tsukahara The brain contains several sexually dimorphic nuclei that exhibit sex differences with respect to cell number. It is likely that the control of cell number by apoptotic cell death in the developing brain contributes to creating sex differences in cell number in sexually dimorphic nuclei, although the mechanisms responsible for this have not been determined completely. The milieu of sex steroids in the developing brain affects sexual differentiation in the brain. The preoptic region of rats has two sexually dimorphic nuclei. The sexually dimorphic nucleus of the preoptic area (SDN-POA) has more neurones in males, whereas the anteroventral periventricular nucleus (AVPV) has a higher cell density in females. Sex differences in apoptotic cell number arise in the SDN-POA and AVPV of rats in the early postnatal period, and an inverse correlation exists between sex differences in apoptotic cell number and the number of living cells in the mature period. The SDN-POA of postnatal male rats exhibits a higher expression of anti-apoptotic Bcl-2 and lower expression of pro-apoptotic Bax compared to that in females and, as a potential result, apoptotic cell death via caspase-3 activation more frequently occurs in the SDN-POA of females. The patterns of expression of Bcl-2 and Bax in the SDN-POA of postnatal female rats are changed to male-typical ones by treatment with oestrogen, which is normally synthesised from testicular androgen and affects the developing brain in males. In the AVPV of postnatal rats, apoptotic regulation also differs between the sexes, although Bcl-2 expression is increased and Bax expression and caspase-3 activity are decreased in females. The mechanisms of apoptosis possibly contributing to the creation of sex differences in cell number and the roles of sex steroids in apoptosis are discussed. [source] Comparison of apoptosis and apoptosis-related gene products between extranodal oral B-cell lymphoma and maxillofacial nodal B,-,cell lymphomaJOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 3 2001Hong-fang Yin Abstract: Twenty-seven cases of primary extranodal oral B-cell lymphoma and 22 cases of primary maxillofacial nodal B-cell lymphoma were investigated for the presence of apoptotic cells and the expression of apoptosis-related gene products by terminal deoxynucleotidyl-mediated dUTP nick end labeling (TUNEL) and immunohistochemistry. The majority of extranodal oral diffuse large B-cell lymphomas (17/25, 68%) and maxillofacial nodal diffuse large B-cell lymphomas (14/16, 88%) contained no or less than 10% apoptotic cells. Whereas the majority of extranodal oral diffuse large B-cell lymphomas (18/25, 72%) and maxillofacial nodal diffuse large B-cell lymphomas (13/16, 81%) contained more than 10% of Ki-67-positive cells. Bcl-2-, Bax-, p53- and Ki-67-positive rates were higher in maxillofacial nodal diffuse large B-cell lymphomas than in extranodal oral diffuse large B-cell lymphomas, but only Bax (,2 test, 0.01 Bcl-2 expression than stage I and stage II tumors (Fisher's exact test, P<0.01).
These findings indicated that in the majority of both extranodal oral and maxillofacial nodal diffuse large B-cell lymphomas, apoptosis was inhibited , whereas proliferative activity was accelerated.
Impairment of apoptosis and apoptotic related gene products may have a more important relation to maxillofacial nodal diffuse large B-cell lymphoma than extranodal oral diffuse large B-cell lymphoma.
[source] Isoflurane attenuates dynorphin-induced cytotoxicity and downregulation of Bcl-2 expression in differentiated neuroblastoma SH-SY5Y cellsACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 1 2009G.-J. WU Background: It has been proposed that the volatile anesthetic isoflurane induces neuroprotection and that the endogenous opioid peptide dynorphin induces neurocytotoxicity in cells. The levels of dynorphin are often significantly elevated in neuropathophysiological conditions, and dynorphin can directly induce toxicity. However, the neuroprotective effects of isoflurane on dynorphin-induced cytotoxicity are still unclear. Methods: In order to determine the effect of isoflurane on dynorphin-induced cytotoxicity in neuronal cells, we have designed a device wherein cultured human neuroblastoma SH-SY5Y cells can be exposed to isoflurane. Fully differentiated SH-SY5Y cells were obtained by treating the cells with retinoic acid for 6 days. We examined SH-SY5Y cell survival, apoptosis, and antiapoptotic protein expression by cell viability, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling stain, and Western blot analysis, respectively. Results: After 16 h of dynorphin (10 ,M) treatment, the SH-SY5Y cells showed significant cytotoxicity, apoptosis, and downregulation of the antiapoptotic Bcl-2 protein expression. These effects of dynorphin were significantly inhibited by isoflurane exposure for 32 h [pretreatment for 16 h and posttreatment (after dynorphin treatment) for 16 h]. Conclusion: Thus, our results suggest that isoflurane exerts neuroprotective effects in the case of dynorphin-induced pathophysiological disruption. [source] Bcl-2 expression in dermal lymphocytes in lichen planus and psoriasis vulgarisJOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 5 2008N Bal [source] Involvement of p38 mitogen-activated protein kinase pathway in honokiol-induced apoptosis in a human hepatoma cell line (hepG2)LIVER INTERNATIONAL, Issue 10 2008Junfang Deng Abstract Background: Honokiol has been known to have antitumour activity. This study was conducted to evaluate the antiproliferative potential of honokiol against the hepG2 heptocellular cell line and its mechanism of action. Methods: hepG2 cells were treated with honokiol of 0,40 ,g/ml concentration. The cytotoxic effect of honokiol was determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptosis was evaluated by flow cytometry. Western blots were used to analyse the expression of various proteins (procaspase-9, procaspase-3, cleaved caspase-3, cytochrome c, Bcl-2, Bax, Bad, Bcl-XL and p38). Results: Honokiol induced apoptosis with a decreased expression of procaspase-3 and -9 and an increased expression of active caspase-3. Exposure of hepG2 cells to honokiol resulted in the downregulation of Bcl-XL and Bcl-2 expression and the release of mitochondrial cytochrome c to the cytosol. In addition, honokiol activated the p38 mitogen-activated protein kinase (MAPK) pathway, and the inhibition of this pathway by SB203580 reduced honokiol-induced apoptosis and activation of caspase-3. Conclusion: Honokiol induces apoptosis of hepG2 human hepatocellular carcinoma cells through activation of the p38 MAPK pathway, and, in turn, activation of caspase-3. [source] Modulation of the oncogenic potential of ,-catenin by the subcellular distribution of plakoglobin,MOLECULAR CARCINOGENESIS, Issue 10 2007Laiji Li Abstract Plakoglobin (Pg) and ,-catenin are homologous proteins that function in cell,cell adhesion and signaling. The cadherin-associated form of these proteins mediates adhesion, whereas the cytosolic/nuclear form has a signaling role. Despite their interactions with common cellular partners, ,-catenin has a well-documented oncogenic potential while Pg has a less characterized tumor suppressor activity. We showed previously that Pg overexpression in Pg-deficient SCC9 cells (SCC9-Pg-WT) induced Bcl-2 expression and inhibited apoptosis. To assess the exact role of Pg in Bcl-2 expression, we generated and characterized SCC9 transfectants expressing Pg with a restricted cytoplasmic (Pg-NES) or nuclear (Pg-NLS) distribution. We show that Bcl-2 was expressed regardless of Pg localization, although its level was substantially lower in SCC9-Pg-NLS cells. Bcl-2 expression coincided with increased nuclear ,-catenin levels (Pg-NES) or a decrease in the level of total and nuclear ,-catenin associated with N-cadherin and ,-catenin (Pg-WT and -NLS) cells. Bcl-2 expression also was induced in SCC9 cells overexpressing ,-catenin. In contrast, SCC9 cells expressing mutant Pg proteins, unable to interact with N-cadherin and ,-catenin, had noticeably lower Bcl-2 levels. Our data suggest that Bcl-2 expression is induced by ,-catenin and modulated by Pg. We show that the inhibition of ,-catenin-dependent TCF transactivation had no effect on Bcl-2 levels, suggesting that induction of Bcl-2 expression by ,-catenin and its modulation by Pg may involve factors other than, or in addition, to, TCF. These results provide a possible mechanism for the tumor suppressor activity of Pg via its role as a regulator of the oncogenic potential ,-catenin. © 2007 Wiley-Liss, Inc. [source] Actinobacillus actinomycetemcomitans induces apoptosis of T lymphocytes by the Fas and Fas ligand pathwayMOLECULAR ORAL MICROBIOLOGY, Issue 5 2002A. Nalbant Actinobacillus actinomycetemcomitans expresses a number of toxins capable of inducing apoptotic cell death of T lymphocytes. However, the exact mechanism(s) has not been elucidated. The present study investigated the involvement of the Fas (CD95)-mediated apoptotic pathway in A. actinomycetemcomitans -induced T-cell apoptosis. To that end, peripheral blood mononuclear cells (PBMC) were cultured with or without A. actinomycetemcomitans cell-free culture supernatant (CFCS) for 0,96 h. The cells were then labeled with specific monoclonal antibodies and flow cytometry was performed. Results demonstrated up-regulation of Fas and activation of caspase-3 in T cells in response to A. actinomycetemcomitans CFCS. Monocytes were the only cells analyzed to express Fas ligand (FasL) constitutively, and this was further up-regulated in response to A. actinomycetemcomitans CFCS, while T cells expressed FasL only after this stimulation. Depletion of monocytes prior to stimulation with A. actinomycetemcomitans CFCS led to a marked decline in apoptosis. Blocking of Fas,FasL interactions with anti-Fas monoclonal antibody or Fas:Fc fusion protein lead to a significant decline, but not abolition, of T-cell apoptosis. Nearly all T cells expressed Bcl-2 at the outset of culture, and Bcl-2 expression declined in T cells stimulated with A. actinomycetemcomitans CFCS. Collectively, these data provide evidence for the induction of T-cell apoptosis by A. actinomycetemcomitans via the Fas-mediated pathway, involving caspase-3 and Bcl- 2. Moreover, this apoptotic response was dependent on the presence of monocytes. [source] Oral and Maxillofacial Pathology: Bcl-2 expression in sequential biopsies of potentially malignant oral mucosal lesions assessed by immunocytochemistryORAL DISEASES, Issue 5 2000RL McAlinden OBJECTIVE: To examine, for the first time Bcl-2 expression in sequential (autogenous) oral mucosal biopsies taken from the same sites in a gender, risk-factor matched, Caucasoid sample, over a 21-year period. DESIGN: Retrospective immunocytochemical longitudinal study of archival serial biopsies. MATERIALS AND METHODS: Computer records were used to identify biopsy specimens derived from 12 patients. These were divided into four groups: (1) Histologically innocuous lesions which remained histologically innocuous. (2) Dysplastic lesions which remained dysplastic. (3) Histologically innocuous lesions which later progressed to squamous cell carcinoma (SCC). (4) Dysplastic lesions which later progressed to SCC. This represented 65 biopsies in total. Bcl-2 expression was studied using mouse antihuman BCL-2 oncoprotein clone 124 (Dako, Denmark). RESULTS: Generally, there was a lack of Bcl-2 immuno-reactivity in the epithelium, with one exception in dysplastic epithelium from a group (3) patient. CONCLUSION: These findings suggest that in our series, Bcl-2 is not expressed early in oral premalignant lesions and appears to contradict previous reports. Possible explanations for this disparity are considered. [source] In Vitro and In Vivo Transfer of bcl-2 Gene into Keratinocytes Suppresses UVB-induced Apoptosis,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2001Hidetoshi Takahashi ABSTRACT Bcl-2 is a member of the large Bcl-2 family and protects cells from apoptosis. Ultraviolet B (UVB) irradiation induces apoptosis of keratinocytes that is known as "sunburn cells." Previously we reported that UVB irradiation induces apoptosis accompanied by sequential activation of caspase 8, 3 and 1 in keratinocytes, and that the process is inhibited by various caspase inhibitors. Using bcl-2,expressing adenovirus vector we investigated the effect of Bcl-2 on UVB-induced apoptosis. Adenovirus vector efficiently introduced bcl-2 gene in cultured normal mouse keratinocytes (NMK cells); almost all NMK cells (1 × 106) were transfected at 1 × 108 plaque-forming unit (PFU)/mL. Bcl-2,transfected NMK cells were significantly resistant to UVB-induced apoptosis with the suppressive effect dependent on the Bcl-2 expression level. Following UVB irradiation caspase 8, 3 and 9 activities were stimulated in NMK cells, whereas in bcl-2,transfected cells only caspase 8, but not caspase 3 or 9, activity was stimulated. In order to investigate the effect of Bcl-2 in vivo topical application of Ad-bcl-2 on tape-stripped mouse skin was performed. Following the application Bcl-2 was efficiently overexpressed in almost all viable keratinocytes. The expression was transient with the maximal expression of Bcl-2 on the first day following the application of 1 × 109 PFU in 200 ,L. The introduced Bcl-2 remained at least for 6 days. UVB irradiation (1250 J/m2) induced apoptosis within 12 h and the maximal effect was observed at 24 h in control mouse skin. Both bcl-2,transfected and topical caspase 3 inhibitor-treated mice skin were resistant to UVB-induced apoptosis. The suppressive effect of Bcl-2 was more potent than that of caspase 3 inhibitor application. Topical application of empty adenovirus vector alone had no effect on Bcl-2 expression or UVB-induced apoptosis. These results indicate that adenovirus vector is an efficient gene delivery system into keratinocytes and that Bcl-2 is a potent inhibitor of UVB-induced apoptosis both in vitro and in vivo. [source] Bcl-2 mediated modulation of vascularization in prostate cancer xenografts,THE PROSTATE, Issue 5 2009Yoshihisa Sakai Abstract PURPOSE We previously demonstrated that Bcl-2 overexpression enhances the radiation resistance of PC-3 human prostate cancer cells and xenografts by inhibiting apoptosis, increasing proliferation, and promoting angiogenesis. To further elucidate the relationship between Bcl-2 expression and the angiogenic potential of PC-3-Bcl-2 cells, tumorigenicity, angiogenesis, and lymphangiogenesis were evaluated and compared in a Bcl-2 overexpressing clone in vitro and in vivo. EXPERIMENTAL DESIGN Human prostate cancer cells over expressing Bcl-2 were studied in vitro and in vivo to determine the angiogenic and lymphangiogenic properties of these cells. RESULTS Increased Bcl-2 expression enhanced the tumorigenicity of prostate cancer xenografts. It also enhanced the expression and secretion of key angiogenic and lymphangiogenic factors that stimulated the synthesis of CD31-positive blood vessels and LYVE-1 positive lymphatics. Specifically, the increased angiogenic and lymphangiogenic potential correlated with increased serum levels of basic fibroblast growth factor (bFGF), interleukin 8 (CXCL8), and matrix metalloproteinase (MMP 9). In vitro analysis demonstrated that Bcl-2 expressing tumor cells secreted bFGF and vascular endothelial growth factor (VEGF) into culture supernatants. Microarray analysis of Bcl-2 expressing PC-3 cells demonstrated increased transcription of genes involved in metabolism, such as interleukins, growth factors, tumor necrosis factors (TNF) family members, and peptidases. CONCLUSIONS Together, these results demonstrate that Bcl-2 can regulate tumoral angiogenesis and lymphangiogenesis and suggest that therapy targeted at Bcl-2 expression, angiogenesis, and lymphangiogenesis may synergistically modulate tumor growth and confirm that Bcl-2 is a pivotal target for cancer therapy. Prostate 69:459,470, 2009. © 2008 Wiley-Liss, Inc. [source] |