Home About us Contact | |||
B Horizons (b + horizon)
Selected AbstractsFactors controlling aggregation in a minimum and a conventionally tilled undulating fieldEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2007S. De Gryze Summary Wind and water erosion induce breakdown of soil aggregates and loss of soil organic matter. Whereas most of the relations between aggregation and its driving factors have been established on a plot scale, these relations might be very different within an undulating landscape where both erosion (by wind or water) and deposition occur. The aim of this study was to investigate to what degree spatial patterns in soil variables influence spatial patterns in aggregation under different tillage intensities. We studied an agricultural field of about 3 ha in the silty region of Belgium. The site was split into a conventional tillage (CT) and a minimum tillage (MT) system. Within the field, 396 geo-referenced surface soil samples (0,5 cm) were taken and analyzed for organic matter content, quantity of aggregates and a number of other soil properties. Under CT, 28.5% of the total sample variation was explained by the occurrence of depositional areas, 20.8% by the amount of soil organic matter, and 13.8% by the presence of a clay-rich B horizon which surfaced due to progressive water and tillage erosion. Regression analysis revealed that 27% of the variation in the quantity of macroaggregates (>0.25 mm) was accounted for by these three factors. Under MT, 27.1% of the total sample variation was related to the surface cover of Tertiary sand, 22.6% to the amount of soil organic matter, and 13% to erodibility. These three factors explained 53% of the variation in the quantity of macroaggregates. In the CT system, the correlation between grass- or maize- carbon and the quantity of macroaggregates was strongly linked to erodibility, while this was not the case in the MT system. We concluded that at this site, macroaggregation is dominated by landscape-scale processes (such as water or tillage erosion) rather than determined by the commonly considered local variables (such as small variations in texture or organic matter content). [source] Interaction of copper and zinc with allophane and organic matter in the B horizon of an AndosolEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2003C. Latrille Summary Andosols developed on basaltic material are naturally rich in metals. Organic matter and allophane, the key colloids of these soils, have a strong affinity for trace metals, but are intimately mixed so that speciation of trace metal is difficult to determine. We used three complementary approaches, namely physical fractionation, chemical extraction and potentiometric measurement, to distinguish them. Physical particle-size separations and chemical selective dissolution of allophanes and organic matter were combined to demonstrate relations between the occurrence of colloids and contents of Cu and Zn in an andic B horizon. About 22% of total soil Cu and 7% of total soil Zn were present in the < 5-,m fraction, associated with organic or amorphous mineral constituents. To support this association further, the affinity of soil colloids for Cu and Zn in a mimicked system was demonstrated. An Al-rich allophane was synthesized, and a portion of the organic matter was extracted from the clay fraction, and their reactivities towards Cu2+ or Zn2+ were studied by potentiometry. The two metallic cations displayed specific affinity towards allophane or soluble organic matter. Furthermore, the behaviour of copper and zinc in the ternary system, allophane + soluble organic matter + trace element, revealed a synergy in the surface complexation. The use of these three speciation approaches highlighted the linkage between metals and constituents, and showed how important the colloidal constituents are in the behaviour of Cu and Zn in Andosols. [source] Organic matter quality of a forest soil subjected to repeated drying and different re-wetting intensitiesEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2010A. Schmitt Extended drought periods followed by heavy rainfall may increase in many regions of the Earth, but the consequences for the quality of soil organic matter and soil microbial communities are poorly understood. Here, we investigated the effect of repeated drying and re-wetting on microbial communities and the quality of particulate and dissolved organic matter in a Haplic Podzol from a Norway spruce stand. After air-drying, undisturbed soil columns were re-wetted at different intensities (8, 20 and 50 mm per day) and time intervals, so that all treatments received the same amount of water per cycle (100 mm). After the third cycle, SOM pools of the treatments were compared with those of non-dried control columns. Lignin phenols were not systematically affected in the O horizons by the treatments whereas fewer lignin phenols were found in the A horizon of the 20- and 50-mm treatments. Microbial biomass and the ratio of fungi to bacteria were generally not altered, suggesting that most soil microorganisms were well adapted to drying and re-wetting in this soil. However, gram-positive bacteria and actinomycetes were reduced whereas gram-negative bacteria and protozoa were stimulated by the treatments. The increase in the (cy 17: 0 + cy 19: 0)/(16:1,7c + 18:1,7c) ratio indicates physiological or nutritional stress for the bacterial communities in the O, A and B horizons with increasing re-wetting intensity. Drying and re-wetting reduced the amount of hydrolysable plant and microbial sugars in all soil horizons. However, CO2 and dissolved organic carbon fluxes could not explain these losses. We postulate that drying and re-wetting triggered chemical alterations of hydrolysable sugar molecules in organic and mineral soil horizons. [source] Sorption of phosphorus in field-moist and air-dried samples from four weakly developed cultivated soil profilesEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2007T. PeltovuoriArticle first published online: 9 FEB 200 Summary Sorption of phosphorus (P) in complete soil profiles in northern Europe is not adequately documented. I measured the sorption in genetic horizons of four cultivated soils (Inceptisols, Spodosol) in Finland using both field-moist and air-dried soil samples, fitted modified Freundlich equations (Q = a × Ib , q) to the data, and presented the results in quantity/intensity (Q/I) graphs. Least-squares-estimates for the parameters of the modified Freundlich equation (a, b, q) were found to be imprecise measures of sorption. Values derived from the fitted equations (the amount of P sorbed at the P concentration of 2 mg litre,1 and P buffering capacity at the same concentration) were more precise. Both were correlated with concentrations of oxalate-extractable iron and aluminium. In all soils, there was a distinct difference in sorption between the fertilized Ap horizons and the subsurface horizons, which retained P strongly. Most of the sorption capacity was located in the B horizons at depths between 0.3 and 0.7 m. The results demonstrate the effects of soil-forming processes and human impact on the sorption of P in the soils. Drying the samples prior to the sorption experiments altered the shape of the Q/I graphs. It increased dissolution of P at small P concentrations, sorption at large P concentrations, and the estimates for P buffering capacity. The effects of drying soil samples on the results and the imprecision of the parameters estimated with the modified Freundlich equation should be taken into account when interpreting results of Q/I experiments. [source] Carbon and nitrogen isotope composition of bulk soils, particle-size fractions and organic material after treatment with hydrofluoric acidEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2005M. W. I. Schmidt Summary Soils and sediments contain only small amounts of organic matter, and large concentrations of paramagnetic metals can give poor solid-state nuclear magnetic resonance (NMR) spectra of organic matter. Pretreatment of samples with hydrofluoric acid (HF) dissolves significant proportions of the mineral matrix and extracts paramagnetic elements. We investigated the effects of 10% HF treatment on the stable isotope content of carbon (C) and nitrogen (N) of organic matter from soils, composts and shales. Additionally we inferred molecular and isotopic characteristics of lost materials from calculations of isotope mass balances. Treatment with HF enriched C and N in mineral samples substantially (factors 2.5,42.4), except for Podzol B horizons (1.1,1.7) and organic material (1.0,1.3). After treatment most of the C (59.7,91.7%) and N (53.7,86.6%) was recovered, although changing C/N ratios often indicated a preferential loss of N-rich material. Isotope ratios of C and N in the remaining material became more negative when net alterations exceeded 0.3,. The isotope ratios of the lost material contained more 13C (1,2,) and 15N (1,4,) than the initial organic matter. Acid hydrolysis typically removes proteins, amino acids and polysaccharides, all of which are enriched in 13C, and in the case of proteins and amino acids, enriched in 15N as well. We conclude that HF treatment released fresh, soluble, probably microbial, biomass in addition to carbohydrates. Net changes of the bulk chemical composition of organic matter were small for most soils, size fractions and plant material, but not for samples containing little organic matter, or those rich in easily soluble organic matter associated with iron oxides, such as Podzol B horizons. [source] Effects of experimental acidification and alkalinization on soil and growth and health of Acer saccharum Marsh.JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 6 2008Rock Ouimet Abstract Experimental application of eight acidifying, neutral, or alkalizer compounds (range: ,16 to 16 kmol ha,1 of acid-neutralizing capacity [ANC]) was realized in two northern hardwood stands having significantly different soil base saturation (BS) (a "poor" and a "rich" site) to assess responses of soil physico-chemical properties, and nutrition, growth, and health of sugar maple (Acer saccharum Marsh.) trees in the short (3 y) and longer term (10 y). The treatments influenced the main indicators of acidity in the forest floor (soil exchangeable-Ca saturation [SCa], BS, exchangeable-acidity saturation [SH+Al], and the SCa/SH+Al ratio) at both sites, their values increasing (decreasing for SH+Al) along the ANC treatment gradient in both the short and longer term, except for pH. Base saturation of the upper 15,cm of the mineral B horizons of soils was influenced at the two sites 10 y after treatment application. Although ANC treatments affected nutrient concentrations of tree foliage in the short term, their effect was no longer detectable after 10 y at the two sites. Growth, however, was strongly related to ANC treatments after 10 y, but only at the poor site. From 1990 to 2000, the basal-area growth rate of trees at the poor site was (mean ± SE) ,0.62 ± 0.28,cm2 y,2 tree,1 for the most negative ANC treatment to +0.90 ± 0.20,cm2 y,2 tree,1 for the most positive ANC treatment. A climatic-stress episode occurring in 1995/96 appeared to accentuate the growth decline of trees subjected to the most negative ANC treatment at the poor site. The experimental results support the hypothesis that atmospheric acid deposition load can cause forest soil base-cation depletion, acidification, and predispose sugar maple to health and growth decline in the longer term in base-cation-poor soils, and that the phenomenon may be reversible by adding alkalizers. [source] |