B Cell Compartment (b + cell_compartment)

Distribution by Scientific Domains


Selected Abstracts


Expression of a non-DNA-binding Ikaros isoform exclusively in B cells leads to autoimmunity but not leukemogenesis

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2007
Heather Wojcik
Abstract Ikaros is a transcriptional regulator whose function is essential for B cell development. It is expressed in the hematopoietic stem cell (HSC) through the mature B cell stage. Using genetically engineered mice in which the endogenous Ikaros gene is disrupted, it has been shown that a lack of Ikaros leads to a block in B cell development and that its severe diminution results in a hyperresponsive B cell compartment. Ikaros expression within the HSC has led to speculation as to whether the role of Ikaros in B cell biology is largely accomplished prior to B cell specification. In addition, widespread expression of Ikaros in hematopoietic cells leads to the possibility that some or all of the observed defects are not B cell autonomous. In this report, we demonstrate that over-expression of a dominant interfering Ikaros isoform exclusively in B cells has profound effects on mature B cell function. We provide evidence that continued high-level expression of Ikaros is essential for homeostasis of peripheral lymphocytes and maintenance of B cell tolerance. We also show that deregulation of Ikaros activity does not rapidly result in B cell leukemogenesis as it does with 100% penetrance within the T cell lineage. [source]


Development of nephritis but not sialadenitis in autoimmune-prone BAFF transgenic mice lacking marginal zone B cells

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 9 2006
Carrie
Abstract B cell-activating factor belonging to the TNF family (BAFF) is a B cell survival factor required for B cell maturation. BAFF transgenic (Tg) mice develop autoimmune disorders characterized by autoantibody production, which leads to nephritis and salivary gland destruction (sialadenitis), features reminiscent of systemic lupus erythematosus and Sjögren's syndrome (SS), respectively. Disease in BAFF Tg mice correlates with the expansion of the marginal zone (MZ) B cell compartment and the abnormal presence of MZ-like B cells in the blood, LN and inflamed salivary glands, suggesting a role for these cells in BAFF-induced autoimmunity. Lymphotoxin-, (LT,)-deficient mice show disrupted splenic architecture, lack MZ B cells and some peripheral LN, and are unable to mount T cell-dependent immune responses. BAFF Tg mice lacking LT, (LT,,-BTg) retained these defects, yet still developed nephritis associated with the presence of B-1 B cells in the kidneys. However, in contrast to old BAFF Tg mice, aging LT,,-BTg mice no longer developed sialadenitis. Thus, autoimmune disorders in BAFF Tg mice are possibly events coordinated by MZ and B-1 B cells at separate anatomical sites. [source]


Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy

ARTHRITIS & RHEUMATISM, Issue 9 2007
Jennifer H. Anolik
Objective Recent data suggest that the reconstituting peripheral B cell compartment after B cell depletion therapy may be functionally immature, with a preponderance of transitional B cells and a paucity of memory B cells. This study was undertaken to determine the magnitude, duration, and cause of these defects in rituximab-treated systemic lupus erythematosus (SLE) patients. Methods Fifteen patients with SLE previously treated with rituximab as part of a phase I/II dose-escalation study were evaluated during a long-term followup (mean followup period 41 months). B cells from peripheral blood and tonsils were assessed using multicolor flow cytometry, and their developmental pathway was classified based on the expression of defined surface markers. Results Reconstitution of peripheral blood CD27+ memory B cells was delayed for several years after B cell depletion therapy in a subset of patients with prolonged clinical responses and autoantibody normalization. This delay correlated with the degree of expansion of B cells of a transitional phenotype during the B cell reconstitution phase (P = 0.005) and the absence of baseline autoantibodies directed against extractable nuclear antigens (RNP, Sm, Ro antigen, La antigen). Despite the paucity of peripheral blood memory cells and the prolonged expansion of functionally immature transitional B cells, tonsil biopsy tissues revealed active germinal center (GC) reactions, but with decreased Fc receptor homolog 4,positive memory B cells. Conclusion These results suggest heterogeneity in the B cell depletion and reconstitution process that impacts clinical and immunologic outcomes in SLE. The presence of GC reactions, but with altered memory B cell subpopulations in tonsils, suggests that peripheral blood memory cell reconstitution lags behind a slow secondary lymphoid tissue recovery, with important implications for immunologic competence and tolerance. [source]


Marginal zone B cell enrichment and strong follicular B cell reduction correlate with a delayed IgG response in a light chain diversity restricted mouse model

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2004
Yacine
Abstract Recently developed B6.,,,SEG mice (by crossing ,, and C57BL/6 mice congenic for the wild Mus spretus SEG strain , locus lacking genes coding for ,1 and ,3) have a very reduced light chain diversity. B6.,,,SEG mice produce only ,2 and ,x light chains. Regardless of their Igh haplotype, B6.,,,SEG mice show a restricted B cell distribution by light chain subtype with ,x dominance in all peripheral compartments except peritoneal cavity where ,2 is dominant. This distribution suggests that selection mechanisms act differently in different B cell compartments on ,2 and ,x bearing B cells. Sequence analysis before or following immunization did not reveal unusual mechanisms of diversification. B6.,,,SEG mice still respond to various challenging antigens using new Ab patterns. In particular, regardless of Igha or Ighb haplotypes, the anti-2,4-dinitrophenyl response is characterized by a restricted diversity for both heavy and light chains and a delayed IgG response when compared to B6 and B6.,, mice. We suggest that the delayed IgG response is due to the expansion of marginal zone B cells whereas follicular B cells are strongly reduced. [source]