Home About us Contact | |||
B3 Domain (b3 + domain)
Selected AbstractsDirect measurement of the transverse and longitudinal 15N chemical shift anisotropy,dipolar cross-correlation rate constants using 1H-coupled HSQC spectraMAGNETIC RESONANCE IN CHEMISTRY, Issue 10 2003Jennifer B. Hall Abstract We describe direct methods for the measurement of the transverse and longitudinal 15N chemical shift anisotropy,dipolar cross-correlation rates based on comparison of the 15N doublet components observed in 1H-coupled 1H,15N HSQC-type spectra. This allows the determination of the cross-correlation rates with no need for correction factors associated with other methods. The signal overlap problem of coupled HSQC spectra is addressed by using the IPAP scheme (Ottiger M, Delaglio F, Bax A. J. Magn. Reson. 1998; 131: 373). The methods proposed here use a conventional t1 evolution period, which allows one to minimize the truncation artifacts observed in a constant-time-type experiment (Hall JB, Dayie K, Fushman D. J. Biomol. NMR 2003; 26: 181). Applications of these measurements to the B3 domain of protein G are discussed. Copyright © 2003 John Wiley & Sons, Ltd. [source] Structure of the B3 domain from Arabidopsis thaliana protein At1g16640PROTEIN SCIENCE, Issue 9 2005Jeanette K. Waltner Abstract A novel DNA binding motif, the B3 domain, has been identified in a number of transcription factors specific to higher plant species, and was recently found to define a new protein fold. Here we report the second structure of a B3 domain, that of the Arabidopsis thaliana protein, At1g16640. As part of an effort to ,rescue' structural genomics targets deemed unsuitable for structure determination as full-length proteins, we applied a combined bioinformatic and experimental strategy to identify an optimal construct containing a predicted conserved domain. By screening a series of N- and C-terminally truncated At1g16640 fragments, we isolated a stable folded domain that met our criteria for structural analysis by NMR spectroscopy. The structure of the B3 domain of At1g16640 consists of a seven-stranded ,-sheet arranged in an open barrel and two short ,-helices, one at each end of the barrel. While At1g16640 is quite distinct from previously characterized B3 domain proteins in terms of amino acid sequence similarity, it adopts the same novel fold that was recently revealed by the RAV1 B3 domain structure. However, putative DNA-binding elements conserved in B3 domains from the RAV, ARF, and ABI3/VP1 subfamilies are largely absent in At1g16640, perhaps suggesting that B3 domains could function in contexts other than transcriptional regulation. [source] Expression, purification and preliminary X-ray diffraction studies of VERNALIZATION1208,341 from Arabidopsis thalianaACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2009Gordon King VERNALIZATION1 (VRN1) is required in the model plant Arabidopsis thaliana for the epigenetic suppression of the floral repressor FLC by prolonged cold treatment. Stable suppression of FLC accelerates flowering, a physiological process known as vernalization. VRN1 is a 341-residue DNA-binding protein that contains two plant-specific B3 domains (B3a and B3b), a putative nuclear localization sequence (NLS) and two putative PEST domains. VRN1208,341 includes the second B3 domain and a region upstream that is highly conserved in the VRN1 orthologues of other dicotyledonous plants. VRN1208,341 was crystallized by the hanging-drop method in 0.05,M sodium acetate pH 6.0 containing 1.0,M NaCl and 18%(w/v) PEG 3350. Preliminary X-ray diffraction data analysis revealed that the VRN1208,341 crystal diffracted to 2.1,Å and belonged to space group C2, with unit-cell parameters a = 105.2, b = 47.9, c = 61.2,Å, , = 90.0, , = 115.4, , = 90.0°. Assuming that two molecules occupy the asymmetric unit, a Matthews coefficient of 2.05,Å3,Da,1 and a solvent content of 40.1% were calculated. [source] Structure of the B3 domain from Arabidopsis thaliana protein At1g16640PROTEIN SCIENCE, Issue 9 2005Jeanette K. Waltner Abstract A novel DNA binding motif, the B3 domain, has been identified in a number of transcription factors specific to higher plant species, and was recently found to define a new protein fold. Here we report the second structure of a B3 domain, that of the Arabidopsis thaliana protein, At1g16640. As part of an effort to ,rescue' structural genomics targets deemed unsuitable for structure determination as full-length proteins, we applied a combined bioinformatic and experimental strategy to identify an optimal construct containing a predicted conserved domain. By screening a series of N- and C-terminally truncated At1g16640 fragments, we isolated a stable folded domain that met our criteria for structural analysis by NMR spectroscopy. The structure of the B3 domain of At1g16640 consists of a seven-stranded ,-sheet arranged in an open barrel and two short ,-helices, one at each end of the barrel. While At1g16640 is quite distinct from previously characterized B3 domain proteins in terms of amino acid sequence similarity, it adopts the same novel fold that was recently revealed by the RAV1 B3 domain structure. However, putative DNA-binding elements conserved in B3 domains from the RAV, ARF, and ABI3/VP1 subfamilies are largely absent in At1g16640, perhaps suggesting that B3 domains could function in contexts other than transcriptional regulation. [source] Expression, purification and preliminary X-ray diffraction studies of VERNALIZATION1208,341 from Arabidopsis thalianaACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2009Gordon King VERNALIZATION1 (VRN1) is required in the model plant Arabidopsis thaliana for the epigenetic suppression of the floral repressor FLC by prolonged cold treatment. Stable suppression of FLC accelerates flowering, a physiological process known as vernalization. VRN1 is a 341-residue DNA-binding protein that contains two plant-specific B3 domains (B3a and B3b), a putative nuclear localization sequence (NLS) and two putative PEST domains. VRN1208,341 includes the second B3 domain and a region upstream that is highly conserved in the VRN1 orthologues of other dicotyledonous plants. VRN1208,341 was crystallized by the hanging-drop method in 0.05,M sodium acetate pH 6.0 containing 1.0,M NaCl and 18%(w/v) PEG 3350. Preliminary X-ray diffraction data analysis revealed that the VRN1208,341 crystal diffracted to 2.1,Å and belonged to space group C2, with unit-cell parameters a = 105.2, b = 47.9, c = 61.2,Å, , = 90.0, , = 115.4, , = 90.0°. Assuming that two molecules occupy the asymmetric unit, a Matthews coefficient of 2.05,Å3,Da,1 and a solvent content of 40.1% were calculated. [source] |