Sliding Friction (sliding + friction)

Distribution by Scientific Domains


Selected Abstracts


Shear band evolution and accumulated microstructural development in Cosserat media

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 10 2004
A. Tordesillas
Abstract This paper prepares the ground for the continuum analysis of shear band evolution using a Cosserat/micropolar constitutive equation derived from micromechanical considerations. The nature of the constitutive response offers two key advantages over other existing models. Firstly, its non-local character obviates the mathematical difficulties of traditional analyses, and facilitates an investigation of the shear band evolution (i.e. the regime beyond the onset of localization). Secondly, the constitutive model parameters are physical properties of particles and their interactions (e.g. particle stiffness coefficients, coefficients of inter-particle rolling friction and sliding friction), as opposed to poorly understood fitting parameters. In this regard, the model is based on the same material properties used as model inputs to a discrete element (DEM) analysis, therefore, the micromechanics approach provides the vehicle for incorporating results not only from physical experiments but also from DEM simulations. Although the capabilities of such constitutive models are still limited, much can be discerned from their general rate form. In this paper, an attempt is made to distinguish between those aspects of the continuum theory of localization that are independent of the constitutive model, and those that require significant advances in the understanding of micromechanics. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Reciprocative sliding friction and wear properties of electrical discharge machined ZrO2 -based composites

LUBRICATION SCIENCE, Issue 9 2009
Koenraad Bonny
Abstract Hot-pressed, laboratory-made, ZrO2 -based composites with 40 vol. % WC, TiCN or TiN were surface finished by electrical discharge machining in order to compare their reciprocating sliding friction and wear response against WC,6wt%Co cemented carbide in unlubricated conditions. Sliding experiments were performed using a Plint TE77 pin-on-flat wear test rig, revealing a strong impact of the secondary phase on the tribological behaviour of the ZrO2 -based composites. The worn surfaces and wear debris were characterised by scanning electron microscopy, energy dispersive X-ray analysis and surface topography scanning, pointing out abrasion, polishing and adhesion as main wear mechanisms. The most favourable friction and wear characteristics were encountered with ZrO2,WC composites compared to the other grades with equal amount of volumetric secondary phase. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Investigation of the Thermal Behaviour of Non-metallic Curved-Face-Width Spur Gears

LUBRICATION SCIENCE, Issue 4 2004
L. Andrei
Abstract This paper describes a curved-face-width spur gear, specially designed for manufacture from non-metallic materials. The benefits of this gear are the higher contact ratio, bending and Hertzian contact resistance, and greater tooth stiffness compared to standard spur gears. A modified geometry is proposed for the gear tooth, the height of which varies along the gear face width. Due to the reduction in tooth height, in sections away from the gear centre, lower sliding friction is expected, with consequences for the gear's thermal behaviour. The complex gear geometry makes the design of a die difficult; therefore the gears were cut on a milling machine, using a special kinematic generation process and related equipment. The tooth flank profile, an involute or near involute in sections away from the gear half-width plane, as well as the flank surface quality determined by the single-cutter tool used for gear manufacture, influence the meshing condition, and can be detrimental to the thermal behaviour of the gear. Experimental tests were carried out to examine the influence of load and speed on the temperature of the curved-face-width spur gears with modified geometry. The measured temperature of the non-standard gear is further compared with the predicted temperature of plastic standard spur gears of the same specification. [source]