Slide Glass (slide + glass)

Distribution by Scientific Domains


Selected Abstracts


DNA ploidy and cell cycle analyses in the bone marrow cells of patients with megaloblastic anemia using laser scanning cytometry,

CYTOMETRY, Issue 2 2008
Takayuki Tsujioka
Abstract Background: Megaloblastic anemias are characterized by several hematopoietic cells with dysplastic nuclear morphology. The analyses of DNA ploidy and cell cycle of these cells are important to understand the property of such diseases. Methods: As laser scanning cytometry (LSC) is a useful tool to evaluate the morphology of the cells fixed on the slide glass together with the quantitative analysis of the fluorescence information of each cell by rapid scanning of the specimens, the authors examined the DNA ploidy and cell cycle of six cases with megaloblastic anemia using LSC. Results: Giant neutrophilic series such as giant metamyelocytes and giant band cells were found to have extraordinarily higher DNA ploidy, while hypersegmented neutrophils represented the normal diploid pattern like normal neutrophils. As to megaloblasts, cell cycle analysis showed that the proportion of the cells in S phase was increased as compared with the case of normal erythroblasts. Conclusions: The present study clearly demonstrates the abnormal aspects of the hematopoietic cells with megaloblastic anemia from the viewpoint of the DNA ploidy and cell cycle analyzed by the use of LSC. © 2007 Clinical Cytometry Society. [source]


Digital image analysis of the flagellar beat of activated and hyperactivated suncus spermatozoa

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2007
Takane Kaneko
Abstract The flagellar beat of hyperactivated Suncus spermatozoa was analyzed by digital imaging and was compared to that of the nonhyperactivated (activated) spermatozoa in order to examine the function of the accessory fibers during the flagellar beat and the sliding filament mechanism inducing the motility of the hyperactivated spermatozoa. Unusual large and long characteristics of the accessory fibers were involved in generating the gently curved bends and a low beat frequency. Examination of the motility parameters of the flagellar beat of the activated and hyperactivated spermatozoa attached to a slide glass by their heads revealed that there were two beating modes: a frequency-curvature dependent mode in the activated flagellar beat and a nearly constant frequency mode in the hyperactivated flagellar beat. The hyperactivated flagellar beat was characterized by sharp bends in the proximal midpiece and a low beat frequency. The sharp bends in the proximal midpiece were induced by the increase in the total length of the microtubule sliding at the flagellar base. The rate of microtubule sliding (sliding velocity) in the axoneme remained almost constant in the flagellar beat of both the activated and hyperactivated spermatozoa. Comparison of the sliding velocity in Suncus, golden hamster, monkey, and sea urchin sperm flagella with their stiffness suggests that the sliding velocity is determined by the stiffness at the flagellar base and that the same sliding microtubule system functions in both mammalian and echinoderm spermatozoa. Mol. Reprod. Dev. 74: 478,485, 2007. © 2006 Wiley-Liss, Inc. [source]


Shock wave induced cytoskeletal and morphological deformations in a human renal carcinoma cell line

CANCER SCIENCE, Issue 4 2006
S. Fatemeh Moosavi-Nejad
Effects of shock waves on the morphology and cytoskeleton of a human renal carcinoma cell line (ACHN) were investigated in vitro. ACHN monolayer cultured on a cover slide glass was treated with 10 shots of focused underwater shock waves, with 16 MPa peak pressure at the focal area of a piezoceramic shock wave generator. After exposure to the shock wave, based on the severity of morphological deformations of the treated cells, the monolayer was divided into three morphological areas; focal, marginal and intact. Morphological deformations were found to be associated with disorganization of the intracellular cytoskeletal filaments. Deformation of the cytoskeletal proteins in the treated cells were separately studied with respect to the location of the cells within the three morphological areas. Among three major cytoskeletal proteins, actin and tubulin, but not vimentin, were affected by the shock waves. The deformed cells reorganized their cytoskeletal network within 3 h with a pattern similar to the control, indicating the transient characteristic of the shock wave induced cytoskeletal damage in the surviving cells. The remaining cell fragments on the slide glass, which contained short actin filaments, indicated the important role of shear stress in damaging the cytoskeletal fibers by shock waves. (Cancer Sci 2006; 97: 296,304) [source]