Home About us Contact | |||
Slice Model (slice + model)
Selected Abstracts,9 -Tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult ratsEPILEPSIA, Issue 8 2010Andrew J. Hill Summary Purpose:, We assessed the anticonvulsant potential of the phytocannabinoid ,9 -tetrahydrocannabivarin (,9 -THCV) by investigating its effects in an in vitro piriform cortex (PC) brain slice model of epileptiform activity, on cannabinoid CB1 receptor radioligand-binding assays and in a generalized seizure model in rats. Methods:, ,9 -THCV was applied before (10 ,m,9 -THCV) or during (10,50 ,m,9 -THCV) epileptiform activity induced by Mg2+ -free extracellular media in adult rat PC slices and measured using multielectrode array (MEA) extracellular electrophysiologic techniques. The actions of ,9 -THCV on CB1 receptors were examined using [3H]SR141716A competition binding and [35S]GTP,S assays in rat cortical membranes. Effects of ,9 -THCV (0.025,2.5 mg/kg) on pentylenetetrazole (PTZ),induced seizures in adult rats were also assessed. Results:, After induction of stable spontaneous epileptiform activity, acute ,9 -THCV application (,20 ,m) significantly reduced burst complex incidence and the amplitude and frequency of paroxysmal depolarizing shifts (PDSs). Furthermore, slices pretreated with 10 ,m,9 -THCV prior to induction of epileptiform activity exhibited significantly reduced burst complex incidence and PDS peak amplitude. In radioligand-binding experiments, ,9 -THCV acted as a CB1 receptor ligand, displacing 0.5 nm [3H]SR141716A with a Ki,290 nm, but exerted no agonist stimulation of [35S]GTP,S binding. In PTZ-induced seizures in vivo, 0.25 mg/kg ,9 -THCV significantly reduced seizure incidence. Discussion:, These data demonstrate that ,9 -THCV exerts antiepileptiform and anticonvulsant properties, actions that are consistent with a CB1 receptor,mediated mechanism and suggest possible therapeutic application in the treatment of pathophysiologic hyperexcitability states. [source] Interneuron subtype specific activation of mGluR1/5 during epileptiform activity in hippocampusEPILEPSIA, Issue 8 2010Nathalie T Sanon Summary Purpose:, Specific inhibitory interneurons in area CA1 of the hippocampus, notably those located in stratum oriens,alveus (O/A-INs), are selectively vulnerable in patients and animal models of temporal lobe epilepsy (TLE). The excitotoxic mechanisms underlying the selective vulnerability of interneurons have not been identified but could involve group I metabotropic glutamate receptor subtypes (mGluR1/5), which have generally proconvulsive actions and activate prominent cationic currents and calcium responses specifically in O/A-INs. Methods:, In this study, we examine the role of mGluR1/5 in interneurons during epileptiform activity using whole-cell recordings from CA1 O/A-INs and selective antagonists of mGluR1, (LY367385) and mGluR5 (MPEP) in a disinhibited rat hippocampal slice model of epileptiform activity. Results:, Our data indicate more prominent epileptiform burst discharges and paroxysmal depolarizations (PDs) in O/A-INs than in interneurons located at the border of strata radiatum and lacunosum/moleculare (R/LM-INs). In addition, mGluR1 and mGluR5 significantly contributed to epileptiform responses in O/A-INs but not in R/LM-INs. Epileptiform burst discharges in O/A-INs were partly dependent on mGluR5. PDs and associated postsynaptic currents were dependent on both mGluR1, and mGluR5. These receptors contributed differently to postsynaptic currents underlying PDs, with mGluR5 contributing to the fast and slow components and mGluR1, to the slow component. Discussion:, These findings support interneuron subtype-specific activation and differential contributions of mGluR1, and mGluR5 to epileptiform activity in O/A-INs, which could be important for their selective vulnerability in TLE. [source] AMPA and metabotropic glutamate receptors cooperatively generate inspiratory-like depolarization in mouse respiratory neurons in vitroEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008Ryland W. Pace Abstract Excitatory transmission mediated by AMPA receptors is critical for respiratory rhythm generation. However, the role of AMPA receptors has not been fully explored. Here we tested the functional role of AMPA receptors in inspiratory neurons of the neonatal mouse preBötzinger complex (preBötC) using an in vitro slice model that retains active respiratory function. Immediately before and during inspiration, preBötC neurons displayed envelopes of depolarization, dubbed inspiratory drive potentials, that required AMPA receptors but largely depended on the Ca2+ -activated non-specific cation current (ICAN). We showed that AMPA receptor-mediated depolarization opened voltage-gated Ca2+ channels to directly evoke ICAN. Inositol 1,4,5-trisphosphate receptor-mediated intracellular Ca2+ release also evoked ICAN. Inositol 1,4,5-trisphosphate receptors acted downstream of group I metabotropic glutamate receptor activity but, here too, AMPA receptor-mediated Ca2+ influx was essential to trigger the metabotropic glutamate receptor contribution to inspiratory drive potential generation. This study helps to elucidate the role of excitatory transmission in respiratory rhythm generation in vitro. AMPA receptors in preBötC neurons initiate convergent signaling pathways that evoke post-synaptic ICAN, which underlies inspiratory drive potentials. The coupling of AMPA receptors with ICAN suggests that latent burst-generating intrinsic conductances are recruited by excitatory synaptic interactions among preBötC neurons in the context of respiratory network activity in vitro, exemplifying a rhythmogenic mechanism based on emergent properties of the network. [source] An improved brain slice model of nerve agent-induced seizure activityJOURNAL OF APPLIED TOXICOLOGY, Issue S1 2001Sebastien J. Wood Abstract A brain slice model was developed to investigate the mechanisms of seizure activity induced by soman and the effectiveness of potential anticonvulsant drugs. Unlike previously reported slice studies with nerve agents, this model contains the entorhinal cortex as well as the hippocampus. This allows the study of the spread of seizure discharges within the limbic system and the development of prolonged, sustained discharges that are rarely seen in the simple hippocampal slice preparation. Soman (1 µM) induced a second population spike in the evoked field potential in the CA1 or CA3 region within 15,20 min. In almost all the slices tested, this developed into spontaneous seizure activity within 30,40 min. As well as interictal bursts, many slices also showed longer periods of high-frequency bursting analogous to ictal seizure activity that originated in the entorhinal cortex. This activity appeared similar to that induced by the muscarinic agonist pilocarpine. Both the second population spike and the spontaneous discharges could be blocked by diazepam and by AMPA/kainate antagonists, but not by the NMDA antagonists AP5 and MK-801. This study confirms that the combined hippocampal,entorhinal cortex slice preparation is a suitable model for investigating the origin and propagation of nerve-agent-induced seizures within the limbic system. Copyright © 2001 John Wiley & Sons, Ltd. [source] Heparanase mechanisms of melanoma metastasis to the brain: Development and use of a brain slice modelJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2006Brian P. Murry Abstract Heparanase (HPSE-1) is an endo-,- D -glucuronidase that cleaves heparan sulfate (HS) chains of proteoglycans (HSPG), and its expression has been associated with increased cell growth, invasion, and angiogenesis of tumors as well as with embryogenesis and tissue development. Since metastatic cancer cells express HPSE-1, we have developed an orthotopic brain slice model to study HPSE-1 involvement in brain-metastatic melanoma. This model allows for the characterization of tumor cell invasion at both quantitative and qualitative levels. Brain-metastatic melanoma cells (B16B15b) showed augmenting levels of HPSE-1 protein expression in a time-dependent manner. Secondly, B16B15b cells pre-treated with HPSE-1 showed a significant increase in the number of cells that invaded into the brain tissue. Finally, HPSE-1 exposure-augmented invasion depth in brain sections by brain-metastatic melanoma cells. We concluded that applying this brain slice model can be beneficial to investigate HPSE-1- related in vivo modalities in brain-metastatic melanoma and brain invasion in general. These results also further emphasize the potential relevance of using this model to design therapies for controlling this type of cancer by blocking HPSE-1 functionality. © 2005 Wiley-Liss, Inc. [source] Endothelin-1 modulates anterograde fast axonal transport in the central nervous systemJOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2005Martha E. Stokely Abstract Anterograde fast axonal transport (FAxT) maintains synaptic function and provides materials necessary for neuronal survival. Localized changes in FAxT are associated with a variety of central nervous system (CNS) neuropathies, where they may contribute to inappropriate remodeling, a process more appropriately involved in synaptic plasticity and development. In some cases, developmental remodeling is regulated by localized secretion of endothelins (ETs), neuroinflammatory peptides that are also pathologically elevated in cases of neurologic disease, CNS injury, or ischemia. To investigate the potential role of ETs in these processes, we decided to test whether locally elevated endothelin-1 (ET-1) modulates FAxT in adult CNS tissues. We used the established in vivo rat optic nerve model and a novel ex vivo rat hippocampal slice model to test this hypothesis. In vivo, exogenously elevated vitreal ET-1 significantly affected protein composition of FAxT-cargos as well as the abundance and peak delivery times for metabolically-labeled proteins that were transported into the optic nerve. Proteins with molecular weights of 139, 118, 89, 80, 64, 59, 51, 45, 42, 37, and 25 kDa were evaluated at injection-sacrifice intervals (ISIs) of 24, 28, 32, and 36 hr. In acute hippocampal slices maintained on nonvascular supplies of glucose and oxygen, ET-1 significantly decreased the distance traveled along the Schaffer collateral tract by nonmetabolically-labeled lipid rafts at 5 and 10 min after pulse-labeling. In both models, ET-1 significantly affected transport or targeted delivery of FaxT-cargos, suggesting that ET-1 has the potential to modulate FAxT in adult CNS tissues. © 2005 Wiley-Liss, Inc. [source] Why would cement porosity reduction be clinically irrelevant, while experimental data show the contraryJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2005D. Janssen Abstract Laboratory bench tests have shown that porosity reduction increases the fatigue life of bone cement specimens. Clinically, however, the effect porosity reduction is subject to debate. We hypothesized that the discrepancy between clinical and experimental findings is related to differences in the stress distribution, which is typically uniform in experimental test specimens, while stress concentrations exist in cement around hip implants. We simulated fatigue failure of cement in a finite element model of an experimental test specimen and of a transverse slice of a total hip arthroplasty with a sharp-cornered stem. Four levels of porosity were introduced. In the fatigue test specimen model, the fatigue life clearly was dependent on the level of porosity, while in the transverse slice model, the level of porosity had virtually no effect on failure of the cement mantle. The results of the simulations confirmed our hypothesis. In simulations of laboratory tests, pores clearly acted as crack initiators, while in the simulation of a real total hip reconstruction, crack formation was governed by local stress singularities. This explains why the beneficial effect of cement porosity reduction on the lifetime of total hip reconstructions may be hard to detect clinically. © 2005 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source] Hamiltonian particle-mesh simulations for a non-hydrostatic vertical slice modelATMOSPHERIC SCIENCE LETTERS, Issue 4 2009Seoleun Shin Abstract A Lagrangian particle method is developed for the simulation of atmospheric flows in a non-hydrostatic vertical slice model. The proposed particle method is an extension of the Hamiltonian particle mesh (HPM) [Frank J, Gottwald G, Reich S. 2002. The Hamiltonian particle-mesh method. In Meshfree Methods for Partial Differential Equations, Lecture Notes in Computational Science and Engineering, Vol. 26, Griebel M, Schweitzer M (eds). Springer-Verlag: Berlin Heidelberg; 131,142] and provides preservation of mass, momentum, and energy. We tested the method for the gravity wave test in Skamarock W, Klemp J. 1994. Efficiency and accuracy of the Klemp-Wilhelmson time-splitting technique. Monthly Weather Review 122: 2623,2630 and the bubble experiments in Robert A. 1993. Bubble convection experiments with a semi-implicit formulation of the Euler equations. Journal of the Atmospheric Sciences 50: 1865,1873. The accuracy of the solutions from the HPM simulation is comparable to those reported in these references. A particularly appealing aspect of the method is in its non-diffusive transport of potential temperature. The solutions are maintained smooth largely due to a ,regularization' of pressure, which is controlled carefully to preserve the total energy and the time-reversibility of the model. In case of the bubble experiments, one also needs to regularize the buoyancy contributions. The simulations demonstrate that particle methods are potentially applicable to non-hydrostatic atmospheric flow regimes and that they lead to a highly accurate transport of materially conserved quantities such as potential temperature under adiabatic flow regimes. Copyright © 2009 Royal Meteorological Society [source] Analysis of a regularized, time-staggered discretization applied to a vertical slice model,ATMOSPHERIC SCIENCE LETTERS, Issue 4 2006Mark Dubal Abstract A regularized and time-staggered discretization of the two-dimensional, vertical slice Euler equation set is described and analysed. A linear normal mode analysis of the time-discrete system indicates that unconditional stability is obtained, for appropriate values of the regularization parameters, for both the hydrostatic and non-hydrostatic cases. Furthermore, when these parameters take their optimal values, the stability behaviour of the normal modes is identical to that obtained from a semi-implicit discretization of the unregularized equations. © Crown Copyright 2006. Reproduced with the permission of the Controller of HMSO. Published by John Wiley & Sons, Ltd. [source] |