Home About us Contact | |||
Slow-wave Activity (slow-wave + activity)
Selected AbstractsSpindles-Inducing Mechanism Modulates Sleep Activation of Interictal Epileptiform Discharges in the Landau,Kleffner SyndromeEPILEPSIA, Issue 2 2000L. Nobili Summary: Purpose: Landau,Kleffner syndrome (LKS) is characterized by a marked increase of interictal epileptiform discharges (IEDs) during sleep. During nonrapid eye movement (NREM) sleep, neuronal membrane potential oscillations lead to the appearance of spindles and delta waves in the surface EEG and might develop into paroxysmal synchronization. Spectral analysis allows the quantitative description of the dynamics of delta (slow-wave activity, SWA, 0.5-4.5 Hz) and sigma activity (SA, 12.0,16.0 Hz) and can be used to assess the relation between SA, SWA, and IEDs during sleep. Methods: We performed six overnight continuous EEG-polysomnographic studies in three patients with LKS. The temporal series of SWA and SA were obtained from a spike-free derivation lead. The IEDs count was performed on the most active lead. Relations between sigma and SWA and time series of lEDs were tested by means of correlation techniques after data normalization. Results: Our results revealed a significantly higher correlation between IEDs and SA with respect to SWA in all the subjects, in total sleep time. The same analysis limited to NREM sleep highlights the better correlation between SA and IEDs. Conclusions: Our data suggest that neural mechanisms involved in the generation of sleep spindles facilitate IEDs production in LKS. [source] Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant miceEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2002Caroline Kopp Abstract A limited set of genes, Clock, Bmal1, mPer1, mPer2, mCry1 and mCry2, has been shown to be essential for the generation of circadian rhythms in mammals. It has been recently suggested that circadian genes might be involved in sleep regulation. We investigated the role of mPer1 and mPer2 genes in the homeostatic regulation of sleep by comparing sleep of mice lacking mPER1 (mPer1 mutants) or a functional mPER2 (mPer2 mutants), and wild-type controls (WT) after 6 h of sleep deprivation (SD). Our main result showed that after SD, all mice displayed the typical increase of slow-wave activity (SWA; EEG power density between 0.75 and 4 Hz) in nonREM sleep, reflecting the homeostatic response to SD. This increase was more prominent over the frontal cortex as compared to the occipital cortex. The genotypes did not differ in the effect of SD on the occipital EEG, while the effect on the frontal EEG was initially diminished in both mPer mutants. Differences between the genotypes were seen in the 24-h distribution of sleep, reflecting especially the phase advance of motor activity onset observed in mPer2 mutants. While the daily distribution of sleep was modulated by mPer1 and mPer2 genes, sleep homeostasis reflected by the SWA increase after 6-h SD was preserved in the mPer mutants. The results provide further evidence for the independence of the circadian and the homeostatic components underlying sleep regulation. [source] Sleep and Rest Regulation in Young and Old Oestrogen-Deficient Female MiceJOURNAL OF NEUROENDOCRINOLOGY, Issue 8 2006V. V. Vyazovskiy The effect of circulating oestrogen deficiency on sleep regulation and locomotor activity was investigated in aromatase cytochrome P450 deficient mice (ArKO) and wild-type (WT) controls. Sleep was recorded in 3-month old mice during a 24-h baseline day, 6-h sleep deprivation (SD) and 18-h recovery, and activity was recorded at the age of 3, 9 and 12 months. In mice deficient of oestrogen, the total amount of sleep per 24 h was the same as in WT controls. However, in ArKO mice, sleep was enhanced in the dark period at the expense of sleep in the light phase, and was more fragmented than sleep in WT mice. This redistribution of sleep resulted in a damped amplitude of slow-wave activity (SWA; power between 0.75,4.0 Hz) in non-rapid eye movement sleep across 24 h. After SD, the rebound of sleep and SWA was similar between the genotypes, suggesting that oestrogen deficiency does not affect the mechanisms maintaining the homeostatic balance between the amount of sleep and its intensity. Motor activity decreased with age in both genotypes and was lower in ArKO mice compared to WT at all three ages. After SD, the amount of rest in 3-month old WT mice increased above baseline and was more consolidated. Both effects were less pronounced in ArKO mice, reflecting the baseline differences between the genotypes. The results indicate that despite the pronounced redistribution of sleep and motor activity in oestrogen deficient mice, the basic homeostatic mechanisms of sleep regulation in ArKO mice remain intact. [source] Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleepACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 2 2008E. HUUPPONEN Background: Dexmedetomidine, a selective ,2 -adrenoceptor agonist, induces a unique, sleep-like state of sedation. The objective of the present work was to study human electroencephalogram (EEG) sleep spindles during dexmedetomidine sedation and compare them with spindles during normal physiological sleep, to test the hypothesis that dexmedetomidine exerts its effects via normal sleep-promoting pathways. Methods: EEG was continuously recorded from a bipolar frontopolar,laterofrontal derivation with Entropy Module (GE Healthcare) during light and deep dexmedetomidine sedation (target-controlled infusions set at 0.5 and 3.2 ng/ml) in 11 healthy subjects, and during physiological sleep in 10 healthy control subjects. Sleep spindles were visually scored and quantitatively analyzed for density, duration, amplitude (band-pass filtering) and frequency content (matching pursuit approach), and compared between the two groups. Results: In visual analysis, EEG activity during dexmedetomidine sedation was similar to physiological stage 2 (S2) sleep with slight to moderate amount of slow-wave activity and abundant sleep spindle activity. In quantitative EEG analyses, sleep spindles were similar during dexmedetomidine sedation and normal sleep. No statistically significant differences were found in spindle density, amplitude or frequency content, but the spindles during dexmedetomidine sedation had longer duration (mean 1.11 s, SD 0.14 s) than spindles in normal sleep (mean 0.88 s, SD 0.14 s; P=0.0014). Conclusions: Analysis of sleep spindles shows that dexmedetomidine produces a state closely resembling physiological S2 sleep in humans, which gives further support to earlier experimental evidence for activation of normal non-rapid eye movement sleep-promoting pathways by this sedative agent. [source] Directional analysis of coherent oscillatory field potentials in the cerebral cortex and basal ganglia of the ratTHE JOURNAL OF PHYSIOLOGY, Issue 3 2005Andrew Sharott Population activity in cortico-basal ganglia circuits is synchronized at different frequencies according to brain state. However, the structures that are likely to drive the synchronization of activity in these circuits remain unclear. Furthermore, it is not known whether the direction of transmission of activity is fixed or dependent on brain state. We have used the directed transfer function (DTF) to investigate the direction in which coherent activity is effectively driven in cortico-basal ganglia circuits. Local field potentials (LFPs) were simultaneously recorded in the subthalamic nucleus (STN), globus pallidus (GP) and substantia nigra pars reticulata (SNr), together with the ipsilateral frontal electrocorticogram (ECoG) of anaesthetized rats. Directional analysis was performed on recordings made during robust cortical slow-wave activity (SWA) and ,global activation'. During SWA, there was coherence at ,1 Hz between ECoG and basal ganglia LFPs, with much of the coherent activity directed from cortex to basal ganglia. There were similar coherent activities at ,1 Hz within the basal ganglia, with more activity directed from SNr to GP and STN, and from STN to GP rather than vice versa. During global activation, peaks in coherent activity were seen at higher frequencies (15,60 Hz), with most coherence also directed from cortex to basal ganglia. Within the basal ganglia, however, coherence was predominantly directed from GP to STN and SNr. Together, these results highlight a lead role for the cortex in activity relationships with the basal ganglia, and further suggest that the effective direction of coupling between basal ganglia nuclei is dynamically organized according to brain state, with activity relationships involving the GP displaying the greatest capacity to change. [source] |