Skull Shape (skull + shape)

Distribution by Scientific Domains


Selected Abstracts


CONVERGENCE AND REMARKABLY CONSISTENT CONSTRAINT IN THE EVOLUTION OF CARNIVORE SKULL SHAPE

EVOLUTION, Issue 5 2007
Stephen Wroe
Phenotypic similarities between distantly related marsupials and placentals are commonly presented as examples of convergence and support for the role of adaptive evolution in shaping morphological and ecological diversity. Here we compare skull shape in a wide range of carnivoran placentals (Carnivora) and nonherbivorous marsupials using a three-dimensional (3-D) geometric morphometric approach. Morphological and ecological diversity among extant carnivorans is considerably greater than is evident in the marsupial order Dasyuromorphia with which they have most commonly been compared. To examine convergence across a wider, but broadly comparable range of feeding ecologies, a dataset inclusive of nondasyuromorphian marsupials and extinct taxa representing morphotypes no longer present was assembled. We found support for the adaptive paradigm, with correlations between morphology, feeding behavior, and bite force, although skull shape better predicted feeding ecology in the phylogenetically diverse marsupial sample than in carnivorans. However, we also show that remarkably consistent but differing constraints have influenced the evolution of cranial shape in both groups. These differences between carnivorans and marsupials, which correlate with brain size and bite force, are maintained across the full gamut of morphologies and feeding categories, from small insectivores and omnivores to large meat-specialists. [source]


Estimation and evidence in forensic anthropology: Sex and race

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2009
Lyle W. Konigsberg
Abstract Forensic anthropology typically uses osteological and/or dental data either to estimate characteristics of unidentified individuals or to serve as evidence in cases where there is a putative identification. In the estimation context, the problem is to describe aspects of an individual that may lead to their eventual identification, whereas in the evidentiary context, the problem is to provide the relative support for the identification. In either context, individual characteristics such as sex and race may be useful. Using a previously published forensic case (Steadman et al. (2006) Am J Phys Anthropol 131:15,26) and a large (N = 3,167) reference sample, we show that the sex of the individual can be reliably estimated using a small set of 11 craniometric variables. The likelihood ratio from sex (assuming a 1:1 sex ratio for the "population at large") is, however, relatively uninformative in "making" the identification. Similarly, the known "race" of the individual is relatively uninformative in "making" the identification, because the individual was recovered from an area where the 2000 US census provides a very homogenous picture of (self-identified) race. Of interest in this analysis is the fact that the individual, who was recovered from Eastern Iowa, classifies very clearly with [Howells 1973. Cranial Variation in Man: A Study by Multivariate Analysis of Patterns of Difference Among Recent Human Populations. Cambridge, MA: Peabody Museum of Archaeology and Ethnology; 1989. Skull Shape and the Map: Craniometric Analyses in the Dispersion of Modern Homo. Cambridge, MA: Harvard University Press]. Easter Islander sample in an analysis with uninformative priors. When the Iowa 2000 Census data on self-reported race are used for informative priors, the individual is clearly identified as "American White." This analysis shows the extreme importance of an informative prior in any forensic application. Am J Phys Anthropol 2009. © 2009 Wiley-Liss, Inc. [source]


Skull shape and feeding strategy in Sphenodon and other Rhynchocephalia (Diapsida: Lepidosauria),

JOURNAL OF MORPHOLOGY, Issue 8 2008
Marc E.H. Jones
Abstract The Rhynchocephalia are a group of small diapsid reptiles that were globally distributed during the early Mesozoic. By contrast, the only extant representatives, Sphenodon punctatus and S. guntheri (Tuatara), are restricted to New Zealand off-shore islands. The Rhynchocephalia are widely considered to be morphologically uniform but research over the past 30 years has revealed unexpected phenotypic and taxonomic diversity. Phylogenetically "basal taxa" generally possess relatively simple conical or columnar teeth whereas more derived taxa possessed stouter flanged teeth and sophisticated shearing mechanisms: orthal in some (e.g., Clevosaurus hudsoni) and propalinal in others (e.g., S. punctatus). This variation in feeding apparatus suggests a wide range of feeding niches were exploited by rhynchocephalians. The relationship of skull shape to skull length, phylogenetic grouping, habit, and characters relating to the feeding apparatus are explored here with geometric morphometric analysis on two-dimensional landmarks. Principle components analysis demonstrates that there are significant differences between phylogenetic groups. In particular, Sphenodon differs significantly from all well known fossil taxa including the most phylogenetically basal forms. Therefore, it is not justifiable to use Sphenodon as a solitary outgroup when studying skull shape and feeding strategy in squamates; rhynchocephalian fossil taxa also need to be considered. There are also significant differences between the skull shapes of aquatic taxa and those of terrestrial taxa. Of the observed variation in skull shape, most variation is subsumed by variation in dentary tooth base shape, the type of jaw movement employed (e.g., orthal vs. propalinal) and the number of palatal tooth rows. By comparison, the presence or absence of flanges, dentary tooth number and palatal tooth row orientation subsume much less. Skull length was also found to be a poor descriptor of overall skull shape. Compared to basal rhynchocephalians members of more derived terrestrial radiations possess an enlarged postorbital area, a high parietal, and a jaw joint positioned ventral to the tooth row. Modification of these features is closely associated with increased biting performance and thus access to novel food items. Some of these same trends are apparent during Sphenodon ontogeny where skull growth is allometric and there is evidence for ontogenetic variation in diet. J. Morphol., 2008. © 2008 Wiley-Liss, Inc. [source]


Comparative growth in the postnatal skull of the extant North American turtle Pseudemys texana (Testudinoidea: Emydidae)

ACTA ZOOLOGICA, Issue 2 2008
Gabe S. Bever
Abstract Bever, G.S. 2007. Comparative growth in the postnatal skull of the extant North American turtle Pseudemys texana (Testudinoidea: Emydidae). ,Acta Zoologica (Stockholm) 88: 000,000 Postnatal growth is one of the many aspects of developmental morphology that remains distinctly understudied in reptiles. Variation and ontogenetic scaling within the skull of the extant emydid turtle, Pseudemys texana is described based on 25 continuous characters. Results indicate that skull shape in this species changes little during postnatal growth relative to the only cryptodire taxa for which comparable datasets are available (Apalone ferox and Sternotherus odoratus). This relative lack of change results in the paedomorphic retention of a largely juvenile appearance in the adult form of P. texana. The skulls of males and females, despite the presence of distinct sexual dimorphism in size, grow with similar scaling patterns, and the few observed differences appear to reflect alteration of the male growth trajectory. Comparisons with A. ferox and S. odoratus reveal a number of similarities and differences that are here interpreted within a phylogenetic context. These preliminary hypotheses constitute predictive statements that phylogenetically bracket the majority of extant cryptodire species and provide baseline comparative data that are necessary for the future recognition of apomorphic transformations. Plasticity of ontogenetic scaling as a response to the homeostatic needs and behaviour of individuals commonly is evoked as a limitation of ontogenetic scaling as a means to inform phylogenetic studies. These evocations are largely unfounded considering that variability itself can evolve and thus be phylogenetically informative. [source]


CONVERGENCE AND REMARKABLY CONSISTENT CONSTRAINT IN THE EVOLUTION OF CARNIVORE SKULL SHAPE

EVOLUTION, Issue 5 2007
Stephen Wroe
Phenotypic similarities between distantly related marsupials and placentals are commonly presented as examples of convergence and support for the role of adaptive evolution in shaping morphological and ecological diversity. Here we compare skull shape in a wide range of carnivoran placentals (Carnivora) and nonherbivorous marsupials using a three-dimensional (3-D) geometric morphometric approach. Morphological and ecological diversity among extant carnivorans is considerably greater than is evident in the marsupial order Dasyuromorphia with which they have most commonly been compared. To examine convergence across a wider, but broadly comparable range of feeding ecologies, a dataset inclusive of nondasyuromorphian marsupials and extinct taxa representing morphotypes no longer present was assembled. We found support for the adaptive paradigm, with correlations between morphology, feeding behavior, and bite force, although skull shape better predicted feeding ecology in the phylogenetically diverse marsupial sample than in carnivorans. However, we also show that remarkably consistent but differing constraints have influenced the evolution of cranial shape in both groups. These differences between carnivorans and marsupials, which correlate with brain size and bite force, are maintained across the full gamut of morphologies and feeding categories, from small insectivores and omnivores to large meat-specialists. [source]


The effects of muscular dystrophy on the craniofacial shape of Mus musculus

JOURNAL OF ANATOMY, Issue 6 2007
Donna Carlson Jones
Abstract Skeletal anomalies are common in patients with muscular dystrophy, despite an absence of mutations to genes that specifically direct skeletogenesis. In order to understand these anomalies further, we examined two strains of muscular dystrophy (laminin- and merosin-deficient) relative to controls, to determine how the weakened muscle forces affected skull shape in a mouse model. Shape was characterized with geometric morphometric techniques, improving upon the limited analytical power of the standard linear measurements. Through these techniques, we document the specific types of cranial skeletal deformation produced by the two strains, each with individual shape abnormalities. The mice with merosin deficiency (with an earlier age of onset) developed skulls with more deformation, probably related to the earlier ontogenetic timing of disease onset. Future examinations of these mouse models may provide insight regarding the impact of muscular forces and the production and maintenance of craniofacial integration and modularity. [source]


Segmentation of human skull in MRI using statistical shape information from CT data

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 3 2009
Defeng Wang PhD
Abstract Purpose To automatically segment the skull from the MRI data using a model-based three-dimensional segmentation scheme. Materials and Methods This study exploited the statistical anatomy extracted from the CT data of a group of subjects by means of constructing an active shape model of the skull surfaces. To construct a reliable shape model, a novel approach was proposed to optimize the automatic landmarking on the coupled surfaces (i.e., the skull vault) by minimizing the description length that incorporated local thickness information. This model was then used to locate the skull shape in MRI of a different group of patients. Results Compared with performing landmarking separately on the coupled surfaces, the proposed landmarking method constructed models that had better generalization ability and specificity. The segmentation accuracies were measured by the Dice coefficient and the set difference, and compared with the method based on mathematical morphology operations. Conclusion The proposed approach using the active shape model based on the statistical skull anatomy presented in the head CT data contributes to more reliable segmentation of the skull from MRI data. J. Magn. Reson. Imaging 2009;30:490,498. © 2009 Wiley-Liss, Inc. [source]


Skull shape and feeding strategy in Sphenodon and other Rhynchocephalia (Diapsida: Lepidosauria),

JOURNAL OF MORPHOLOGY, Issue 8 2008
Marc E.H. Jones
Abstract The Rhynchocephalia are a group of small diapsid reptiles that were globally distributed during the early Mesozoic. By contrast, the only extant representatives, Sphenodon punctatus and S. guntheri (Tuatara), are restricted to New Zealand off-shore islands. The Rhynchocephalia are widely considered to be morphologically uniform but research over the past 30 years has revealed unexpected phenotypic and taxonomic diversity. Phylogenetically "basal taxa" generally possess relatively simple conical or columnar teeth whereas more derived taxa possessed stouter flanged teeth and sophisticated shearing mechanisms: orthal in some (e.g., Clevosaurus hudsoni) and propalinal in others (e.g., S. punctatus). This variation in feeding apparatus suggests a wide range of feeding niches were exploited by rhynchocephalians. The relationship of skull shape to skull length, phylogenetic grouping, habit, and characters relating to the feeding apparatus are explored here with geometric morphometric analysis on two-dimensional landmarks. Principle components analysis demonstrates that there are significant differences between phylogenetic groups. In particular, Sphenodon differs significantly from all well known fossil taxa including the most phylogenetically basal forms. Therefore, it is not justifiable to use Sphenodon as a solitary outgroup when studying skull shape and feeding strategy in squamates; rhynchocephalian fossil taxa also need to be considered. There are also significant differences between the skull shapes of aquatic taxa and those of terrestrial taxa. Of the observed variation in skull shape, most variation is subsumed by variation in dentary tooth base shape, the type of jaw movement employed (e.g., orthal vs. propalinal) and the number of palatal tooth rows. By comparison, the presence or absence of flanges, dentary tooth number and palatal tooth row orientation subsume much less. Skull length was also found to be a poor descriptor of overall skull shape. Compared to basal rhynchocephalians members of more derived terrestrial radiations possess an enlarged postorbital area, a high parietal, and a jaw joint positioned ventral to the tooth row. Modification of these features is closely associated with increased biting performance and thus access to novel food items. Some of these same trends are apparent during Sphenodon ontogeny where skull growth is allometric and there is evidence for ontogenetic variation in diet. J. Morphol., 2008. © 2008 Wiley-Liss, Inc. [source]


Speciation mirrors geomorphology and palaeoclimatic history in African laminate-toothed rats (Muridae: Otomyini) of the Otomys denti and Otomys lacustris species-complexes in the ,Montane Circle' of East Africa

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009
PETER J. TAYLOR
We adopted an integrated systematic approach to delimit evolutionary species and describe phylogeographic, morphometric and ecological relationships in Otomys denti (from the Albertine Rift, Southern Rift in Malawi and the northern Eastern Arc Mountains) and Otomys lacustris (from the Southern Rift in Tanzania and Zambia, and the southern Eastern Arc Mountains). Molecular [cytochrome (cyt) b sequences, 1143 bp, N = 18], craniometric (classical, N = 100 and geometric, N = 60) and ecological (Partial Least Squares regression of shape and ecogeographic variables) approaches show a profound, parallel disjunction between two groups: (1) Eastern Arc and Southern Rift (including the Malawi Rift) (O. lacustris and Otomys denti sungae) and (2) Albertine Rift (Otomys denti denti and Otomys denti kempi) taxa. Within both groups, cyt b sequences or craniometric analysis provided evidence for the differentiation of both southern and northern Eastern Arc from Southern Rift lineages (across the so-called Makambako Gap). Within the Albertine Rift (denti,kempi) lineage, populations from individual mountain ranges differed significantly in skull shape (but not size), but were similar genetically. Over-reliance in the past on very few morphological characters (e.g. number of molar laminae) and a polytypic species concept has obscured phylogenetic relationships and species discrimination in this group. We recognize at least three species in this group, and distinct lineages within two of these species. Each species or lineage was endemic to one of three regions: the Albertine Rift, the Malawi Rift or the Eastern Arc. Our result echo conclusions of recent studies of other mammalian and bird taxa and reflect the geomorphology and palaeoclimatic history of the region. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96, 913,941. [source]


Skull shape and feeding strategy in Sphenodon and other Rhynchocephalia (Diapsida: Lepidosauria),

JOURNAL OF MORPHOLOGY, Issue 8 2008
Marc E.H. Jones
Abstract The Rhynchocephalia are a group of small diapsid reptiles that were globally distributed during the early Mesozoic. By contrast, the only extant representatives, Sphenodon punctatus and S. guntheri (Tuatara), are restricted to New Zealand off-shore islands. The Rhynchocephalia are widely considered to be morphologically uniform but research over the past 30 years has revealed unexpected phenotypic and taxonomic diversity. Phylogenetically "basal taxa" generally possess relatively simple conical or columnar teeth whereas more derived taxa possessed stouter flanged teeth and sophisticated shearing mechanisms: orthal in some (e.g., Clevosaurus hudsoni) and propalinal in others (e.g., S. punctatus). This variation in feeding apparatus suggests a wide range of feeding niches were exploited by rhynchocephalians. The relationship of skull shape to skull length, phylogenetic grouping, habit, and characters relating to the feeding apparatus are explored here with geometric morphometric analysis on two-dimensional landmarks. Principle components analysis demonstrates that there are significant differences between phylogenetic groups. In particular, Sphenodon differs significantly from all well known fossil taxa including the most phylogenetically basal forms. Therefore, it is not justifiable to use Sphenodon as a solitary outgroup when studying skull shape and feeding strategy in squamates; rhynchocephalian fossil taxa also need to be considered. There are also significant differences between the skull shapes of aquatic taxa and those of terrestrial taxa. Of the observed variation in skull shape, most variation is subsumed by variation in dentary tooth base shape, the type of jaw movement employed (e.g., orthal vs. propalinal) and the number of palatal tooth rows. By comparison, the presence or absence of flanges, dentary tooth number and palatal tooth row orientation subsume much less. Skull length was also found to be a poor descriptor of overall skull shape. Compared to basal rhynchocephalians members of more derived terrestrial radiations possess an enlarged postorbital area, a high parietal, and a jaw joint positioned ventral to the tooth row. Modification of these features is closely associated with increased biting performance and thus access to novel food items. Some of these same trends are apparent during Sphenodon ontogeny where skull growth is allometric and there is evidence for ontogenetic variation in diet. J. Morphol., 2008. © 2008 Wiley-Liss, Inc. [source]


Microanatomy of the Mandibular Symphysis in Lizards: Patterns in Fiber Orientation and Meckel's Cartilage and Their Significance in Cranial Evolution

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 8 2010
Casey M. Holliday
Abstract Although the mandibular symphysis is a functionally and evolutionarily important feature of the vertebrate skull, little is known about the soft-tissue morphology of the joint in squamate reptiles. Lizards evolved a diversity of skull shapes and feeding behaviors, thus it is expected that the morphology of the symphysis will correspond with functional patterns. Here, we present new histological data illustrating the morphology of the joint in a number of taxa including iguanians, geckos, scincomorphs, lacertoids, and anguimorphs. The symphyses of all taxa exhibit dorsal and ventral fibrous portions of the joints that possess an array of parallel and woven collagen fibers. The middle and ventral portions of the joints are complemented by contributions of Meckel's cartilage. Kinetic taxa have more loosely built symphyses with large domains of parallel-oriented fibers whereas hard biting and akinetic taxa have symphyses primarily composed of dense, woven fibers. Whereas most taxa maintain unfused Meckel's cartilages, iguanians, and geckos independently evolved fused Meckel's cartilages; however, the joint's morphologies suggest different developmental mechanisms. Fused Meckel's cartilages may be associated with the apomorphic lingual behaviors exhibited by iguanians (tongue translation) and geckos (drinking). These morphological data shed new light on the functional, developmental, and evolutionary patterns displayed by the heads of lizards. Anat Rec 293:1350,1359, 2010. © 2010 Wiley-Liss, Inc. [source]