Skin Physiology (skin + physiology)

Distribution by Scientific Domains


Selected Abstracts


Functional skin adaptation in infancy , almost complete but not fully competent

EXPERIMENTAL DERMATOLOGY, Issue 6 2010
Joachim W. Fluhr
Please cite this paper as: Functional skin adaptation in infancy , almost complete but not fully competent. Experimental Dermatology 2010; 19: 483,492. Abstract:, Early postnatal life is a period of active functional reorganization and cutaneous physiological adaptation to the extrauterine environment. Skin as the outermost organ of mammalians is endowed of multiple functions such as protection, secretion, absorption and thermoregulation. Birth stimulates the epidermal barrier maturation and the skin surface acidification especially in premature infants. In full-term infants the developed stratum corneum accomplishes competent barrier function, in contrast to prematures. Complete barrier maturation in preterm infants is fulfilled by 2,4 weeks of the postnatal life. However, in preterms with 23,25 weeks gestational age this process takes longer. Versatile regulatory mechanisms, namely skin surface acidity, calcium ion gradient and nuclear hormone receptors/ligands are interrelated in the complex postnatal newborn adaptation. The skin of newborns is adjusting quickly to the challenging environmental conditions of the postpartum. However, certain functions, for example, microcirculation, continue to develop even beyond the neonatal period, that is, up to the age of 14,17 weeks. Different environmental factors (for instance, dry and cold climate, diapers and cosmetic care procedures) influence the postnatal development of skin functional parameters such as stratum corneum hydration and the permeability barrier especially in premature infants. The aim of this article is to summarize the current knowledge on skin physiology in newborn and infants with a practical approach and to discuss the possible clinical consequences. This review offers the readership a critical and practical overview of skin physiology in newborns and infants. It emphasizes possible new research fields in neonatal and infantile skin physiology. [source]


Opioids and the skin , where do we stand?

EXPERIMENTAL DERMATOLOGY, Issue 5 2009
Paul L. Bigliardi
Abstract:, The common ectodermal origin of the skin and nervous systems can be expected to predict likely interactions in the adult. Over the last couple of decades much progress has been made to elucidate the nature of these interactions, which provide multidirectional controls between the centrally located brain and the peripherally located skin and immune system. The opioid system is an excellent example of such an interaction and there is growing evidence that opioid receptors (OR) and their endogenous opioid agonists are functional in different skin structures, including peripheral nerve fibres, keratinocytes, melanocytes, hair follicles and immune cells. Greater knowledge of these skin-associated opioid interactions will be important for the treatment of chronic and acute pain and pruritus. Topical treatment of the skin with opioid ligands is particularly attractive as they are active with few side effects, especially if they cannot cross the blood,brain barrier. Moreover, cutaneous activation of the opioid system (e.g. by peripheral nerves, cutaneous and immune cells, especially in inflamed and damaged skin) can influence cell differentiation and apoptosis, and thus may be important for the repair of damaged skin. While many of the pieces of this intriguing puzzle remain to be found, we attempt in this review to weave a thread around available data to discuss how the peripheral opioid system may impact on different key players in skin physiology and pathology. [source]


Update on peptidylarginine deiminases and deimination in skin physiology and severe human diseases

INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 3 2007
M.-C. Méchin
Synopsis Deimination (or citrullination) is a recently described post-translational modification, but its consequences are not yet well understood. It is catalysed by peptidylarginine deiminases (PADs). These enzymes transform arginyl residues involved in a peptidyl link into citrullyl residues in a calcium-dependent manner. Several PAD substrates have already been identified like filaggrin and keratins K1 and K10 in the epidermis, trichohyalin in hair follicles, but also ubiquitous proteins like histones. PADs act in a large panel of physiological functions as cellular differentiation or gene regulation. It has been suggested that deimination plays a role in many major diseases such as rheumatoid arthritis, multiple sclerosis, Alzheimer's disease and psoriasis. Five human genes (PADIs), encoding five highly conserved paralogous enzymes (PAD1-4 and 6), have been characterized. These genes are clustered in a single locus, at 1p35-36 in man. Only PAD1-3 are expressed in human epidermis. PADs seem to be controlled at transcriptional, translational and activity levels and they present particular substrate specificities. In this review, we shall discuss these main biochemical, genetic and functional aspects of PADs together with their pathophysiological implications. Résumé La désimination (ou citrullination) est une modification post-traductionnelle catalysée par les peptidyl-arginine désiminases (PADs), décrite depuis peu et dont les conséquences sont encore mal comprises. Ces enzymes transforment, de façon dépendante du calcium, les résidus arginyl engagés dans un lien peptidique en résidus citrullyl. Plusieurs substrats ont été identifiés: la filaggrine et les cytokératines K1 et K10 de l'épiderme, la trichohyaline dans le follicule pileux mais aussi des protéines ubiquistes comme les histones. Les PADs interviennent dans de nombreuses fonctions physiologiques telles que la différenciation cellulaire ou la régulation génique. La désimination pourrait jouer un rôle dans plusieurs maladies sévères et fréquentes comme la polyarthrite rhumatoïde, la sclérose en plaque, la maladie d'Alzheimer ou encore le psoriasis. Cinq gènes humains (PADIs) codant pour 5 enzymes paralogues conservées (PAD1-4 et 6) ont été caractérisés. Ils sont regroupés en un seul locus, en 1p35-36 chez l'homme. Seules les PAD1-3 sont exprimées dans l'épiderme humain. Les PADs semblent contrôlées aux niveaux transcriptionnel et traductionnel, ainsi qu'au niveau de leur activité. Elles présentent chacune leurs spécificités de substrats. Ces principaux aspects biochimiques, génétiques et fonctionnels des PADs tout comme leurs implications physiopathologiques seront discutés dans cette revue. [source]


Insulin receptor substrate 1 (IRS-1) plays a unique role in normal epidermal physiology,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2007
Marianna Sadagurski
Insulin receptor substrate (IRS) proteins play a central role in insulin signaling. Previously we have demonstrated that insulin is essential for normal skin development and function. In the present study we investigated the involvement of the IRS-1 and IRS-2 proteins in skin physiology and in mediating insulin action in skin. For this purpose we have investigated the effects of inactivation of each of the IRSs on skin, studying skin sections and primary skin cells derived from IRS-1 or IRS-2 null mice. We have demonstrated that while the skin of the IRS-2 null mice appeared normal, the skin of the IRS-1 null mice was thinner and translucent. Histological analysis revealed that the thinning of the IRS-1 null skin was a consequence of the thinning of the spinous compartment, consisting of fewer layers. Proliferation of the IRS-1 and IRS-2 null skin epidermal cells was normal. However, the differentiation process of the IRS-1 skin and skin cells was impaired. There was a marked decrease in the induction of the expression of K1, the marker of advanced stages of skin differentiation. In contrary, IRS-2 inactivation had no effects on skin differentiation. In conclusion, we have shown for the first time that IRS-1 but not IRS-2 has an effect on skin formation and development, being one of the main activators of the differentiation process in skin keratinocytes. Furthermore, we suggest that IRS-1 and IRS-2 have distinct roles in skin physiology. J. Cell. Physiol. 213: 519,527, 2007. © 2007 Wiley-Liss, Inc. [source]


Skin cleansing in children

JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 2001
C Gelmetti
Abstract The problems of skin cleansing in infants have been re-evaluated in recent years on the basis of current understanding of cosmetology and skin physiology. The anatomical and functional peculiarities of infant's skin have been elucidated and, although it is known that the barrier function is established at birth in normal babies, it remains the case that children's skin is more delicate and therefore more prone to irritant and allergic contact dermatitis. These factors determine the choice of cleansing agents during infancy. The products available on the market differ markedly. Indeed detergents, bath oils, bath powders, due to their distinctive properties, have different indications and different benefits. The method of cleansing the skin, i.e. bathing or showering, is also important. The frequency of cleansing should take into account the age and the degree of exposure to pollutants. For special purposes, e.g. impetiginized dermatoses, antiseptics such as potassium permanganate or chlorhexidine can be added to the water in appropriate concentrations. The ideal paediatric detergent should be very mild to avoid irritant dermatitis, and very simple to avoid allergic dermatitis. [source]