Skeletal Muscle Regeneration (skeletal + muscle_regeneration)

Distribution by Scientific Domains


Selected Abstracts


Dermatan sulfate exerts an enhanced growth factor response on skeletal muscle satellite cell proliferation and migration

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2004
Joan Villena
Skeletal muscle regeneration is a complex process in which many agents are involved. When skeletal muscle suffers an injury, quiescent resident myoblasts called satellite cells are activated to proliferate, migrate, and finally differentiate. This whole process occurs in the presence of growth factors, the extracellular matrix (ECM), and infiltrating macrophages. We have shown previously that different proteoglycans, either present at the plasma membrane or the ECM, are involved in the differentiation process by regulating growth factor activity. In this article, we evaluated the role of glycosaminoglycans (GAGs) in myoblast proliferation and migration, using C2C12, a satellite cell-derived cell line. A synergic stimulatory effect on myoblast proliferation was observed with hepatocyte growth factor (HGF) and fibroblast growth factor type 2 (FGF-2), which was dependent on cell sulfation. The GAG dermatan sulfate (DS) enhanced HGF/FGF-2-dependent proliferation at 1,10 ng/ml. However, decorin, a proteoglycan containing DS, was unable to reproduce this enhanced proliferative effect. On the other hand, HGF strongly increased myoblast migration. The HGF-dependent migratory process required the presence of sulfated proteoglycans/GAGs present on the myoblast surface, as inhibition of both cell sulfation, and heparitinase (Hase) and chondroitinase ABC (Chabc) treatment of myoblasts, resulted in a very strong inhibition of cell migration. Among the GAGs analyzed, DS most increased HGF-dependent myoblast migration. Taken together, these findings showed that DS is an enhancer of growth factor-dependent proliferation and migration, two critical processes involved in skeletal muscle formation. J. Cell. Physiol. 198: 169,178, 2004© 2003 Wiley-Liss, Inc. [source]


Skeletal muscle regeneration: report of a case presenting as a cutaneous nodule following blunt trauma to the lip

JOURNAL OF CUTANEOUS PATHOLOGY, Issue 4 2007
Samer H. Ghosn
A 61-year-old man presented with a 4-month history of an enlarging nodule on the upper lip following blunt trauma. An initial punch biopsy was non-diagnostic. A deeper biopsy revealed a multilobular proliferation of atypical and pleomorphic cells with vesicular nuclei, prominent nucleoli, and large amphophilic cytoplasm. Immunoperoxidase studies showed these cells to be positive for muscle-specific actin and desmin and negative for S-100 protein and smooth muscle actin. Based on these findings, a diagnosis of skeletal muscle regeneration (SMR) was made. To our knowledge, this is the first report of SMR presenting clinically as a rapidly growing cutaneous nodule on the lip following blunt trauma. [source]


Novel role for ,-adrenergic signalling in skeletal muscle growth, development and regeneration

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 3 2010
James G Ryall
Summary 1. In adult mammals, skeletal muscle mass is maintained through a precise balance of protein synthesis and protein degradation, whereas during development cellular (not protein) turnover predominates. When protein balance is shifted towards synthesis, skeletal muscle hypertrophy ensues. In contrast, increased protein degradation leads to skeletal muscle atrophy. Insulin-like growth factor (IGF)-I is among the best documented of the growth factors and regulates skeletal muscle mass by increasing protein synthesis and decreasing protein degradation. However, an IGF-I-independent growth pathway has been identified that involves the activation of ,-adrenoceptors and subsequent skeletal muscle growth, development and hypertrophy. 2. Although the importance of ,-adrenergic signalling in the heart has been well documented and continues to receive significant attention, it is only more recently that we have started to appreciate the importance of this signalling pathway in skeletal muscle structure and function. Studies have identified an important role for ,-adrenoceptors in myogenesis and work from our laboratory has identified a novel role for ,-adrenoceptors in regulating skeletal muscle regeneration after myotoxic injury. In addition, new data suggest that ,-adrenoceptors are markedly upregulated during differentiation of C2C12 cells. 3. It is now clear that ,-adrenoceptors play an important role in regulating skeletal muscle structure and function. Importantly, a clearer understanding of the pathways regulating skeletal muscle mass may lead to the identification of novel therapeutic targets for the treatment of muscle wasting disorders, including sarcopenia, cancer cachexia and the muscular dystrophies. [source]