Home About us Contact | |||
Skeletal Muscle Cells (skeletal + muscle_cell)
Kinds of Skeletal Muscle Cells Selected AbstractsBehavior of Cardiomyocytes and Skeletal Muscle Cells on Different Extracellular Matrix Components,Relevance for Cardiac Tissue EngineeringARTIFICIAL ORGANS, Issue 1 2007Karin Macfelda Abstract:, Myocardial cell transplantation in patients with heart failure is emerging as a potential therapeutic option to augment the function of remaining myocytes. Nevertheless, further investigations on basic issues such as ideal cell type continue to be evaluated. Therefore, the aim of our studies was to compare the performance of skeletal muscle cells and cardiomyocytes with respect to their proliferation rate and viability on different extracellular matrix components (EMCs). Rat cardiomyocytes (RCM) and rat skeletal muscle cells (RSMC) were cultured on EMCs such as collagen type I, type IV, laminin, and fibronectin. The components were used as "single coating" as well as "double coating." Proliferation rates were determined by proliferation assays on days 1, 2, 4, and 8 after inoculation of the cells. The most essential result is that collagen type I enhances the proliferation rate of RSMC but decreases the proliferation of RCM significantly. This effect is independent of the second EMC used for the double-coating studies. Other EMCs also influence cellular behavior, whereas the sequence of the EMCs is essential. Results obtained in our studies reveal the significant different proliferation behavior of RCM and RSMC under identical conditions. As skeletal muscle cells are also used in heart tissue engineering models, these results are essential and should be investigated in further studies to prove the applicability of skeletal muscle cells for heart tissue engineering purposes. [source] Role of ataxia telangiectasia mutated in insulin signalling of muscle-derived cell lines and mouse soleusACTA PHYSIOLOGICA, Issue 4 2010I. Jeong Abstract Aim:, Ataxia telangiectasia mutated (ATM) reportedly plays a role in insulin-stimulated activation of Akt in some cell types but not in others. The role of ATM in insulin signalling has not been firmly resolved for skeletal muscle cells, for which Akt phosphorylation is a pivotal step in stimulation of glucose transport. Accordingly, our aim was to determine the role of ATM in insulin effects for cell lines derived from skeletal muscle and for skeletal muscle. Methods:, We examined insulin effects in L6 myotubes, mouse soleus, C2C12 myotubes and differentiated rhabdomyosarcoma (RD) cells in the presence and absence of a low concentration (1 ,m) of the ATM inhibitor KU55933. We also compared insulin signalling in C2C12 cells expressing shRNA against ATM and control cell lines (empty vector; cells expressing non-targeting shRNA). Results:, In L6 myotubes and mouse soleus muscle, KU55933 inhibited insulin-stimulated phosphorylation of the 160 kDa substrate of Akt (AS160) despite no effect on Akt. In contrast, KU55933 prevented insulin-stimulated Akt phosphorylation in C2C12 myotubes. Furthermore, C2C12 myotubes expressing shRNA against ATM displayed reduced insulin-stimulated Akt phosphorylation compared to controls. KU55933 also decreased insulin-stimulated Akt phosphorylation in differentiated RD cells. Conclusion:, These model-dependent differences in the role of ATM in insulin action demonstrate a role of ATM in insulin-stimulated phosphorylation of Akt (in C2C12 and RD cells) but also allow the elucidation of a novel, Akt-independent role of ATM (in L6 myotubes and mouse soleus, at the level of AS160) in insulin signalling. [source] Contraction-induced changes in skeletal muscle Na+,K+ pump mRNA expression , importance of exercise intensity and Ca2+ -mediated signallingACTA PHYSIOLOGICA, Issue 4 2010N. B. Nordsborg Abstract Aim:, To investigate if exercise intensity and Ca2+ signalling regulate Na+,K+ pump mRNA expression in skeletal muscle. Methods:, The importance of exercise intensity was evaluated by having trained and untrained humans perform intense intermittent and prolonged exercise. The importance of Ca2+ signalling was investigated by electrical stimulation of rat soleus and extensor digitorum longus (EDL) muscles in combination with studies of cell cultures. Results:, Intermittent cycling exercise at ,85% of VO2peak increased (P < 0.05) ,1 and ,1 mRNA expression ,2-fold in untrained and trained subjects. In trained subjects, intermittent exercise at ,70% of VO2peak resulted in a less (P < 0.05) pronounced increase (,1.4-fold; P < 0.05) for ,1 and no change in ,1 mRNA. Prolonged low intensity exercise increased (P < 0.05) mRNA expression of ,1 ,3.0-fold and ,2 ,1.8-fold in untrained but not in trained subjects. Electrical stimulation of rat soleus, but not EDL, muscle increased (P < 0.05) ,1 mRNA expression, but not when combined with KN62 and cyclosporin A incubation. Ionomycin incubation of cultured primary rat skeletal muscle cells increased (P < 0.05) ,1 and reduced (P < 0.001) ,2 mRNA expression and these responses were abolished (P < 0.05) by co-incubation with cyclosporin A or KN62. Conclusion:, (1) Exercise-induced increases in Na+,K+ pump ,1 and ,1 mRNA expression in trained subjects are more pronounced after high- than after moderate- and low-intensity exercise. (2) Both prolonged low and short-duration high-intensity exercise increase ,1 mRNA expression in untrained subjects. (3) Ca2+i regulates ,1 mRNA expression in oxidative muscles via Ca2+/calmodulin-dependent protein kinase (CaMK) and calcineurin signalling pathways. [source] Oestradiol and SERM treatments influence oestrogen receptor coregulator gene expression in human skeletal muscle cellsACTA PHYSIOLOGICA, Issue 3 2009C. M. Dieli-Conwright Abstract Aim:, Oestrogen receptors (ER) are present in human skeletal muscle (hSkM) cells; however, the function of the receptor is currently unknown. We investigated the influence of oestradiol and selective ER modulators [tamoxifen (TAM), raloxifene (RAL)] on ER coregulator mRNA expression in hSkM. Methods:, Human skeletal muscle cells were treated with 10 nm oestradiol, 5 ,m TAM and 10 ,m RAL over a 24-h period. Following the treatment period, mRNA expression was quantified using real-time PCR to detect changes in ER-,, ER-,, steroid receptor coactivator (SRC), silencing mediator for retinoid and thyroid hormone receptors (SMRT), MyoD, GLUT4 and c-fos. Results:, ER-, mRNA expression increased with all three drug treatments (P < 0.05) while there was no change in mRNA expression of ER-, in hSkM cells. mRNA expression of SRC increased and SMRT decreased with oestradiol, TAM and RAL in hSkM cells (P < 0.05). Importantly, mRNA expression of MyoD increased with oestradiol and decreased with TAM and RAL in hSkM cells (P < 0.05). mRNA expression of GLUT4 increased with oestradiol and RAL and decreased with TAM in hSkM cells (P < 0.05). Conclusions:, These findings are novel in that they provide the first evidence that oestradiol and selective ER modulators influence ER-, function in hSkM cells. This demonstrates the importance of the ER and alterations in its coregulators, to potentially prevent sarcopenia and promote muscle growth in postmenopausal women using these forms of hormone replacement therapy. [source] Evidence against a sexual dimorphism in glucose and fatty acid metabolism in skeletal muscle cultures from age-matched men and post-menopausal womenACTA PHYSIOLOGICA, Issue 3 2009A. Rune Abstract Aim:,In vivo whole body differences in glucose/lipid metabolism exist between men and women. Thus, we tested the hypothesis that intrinsic sex differences exist in skeletal muscle gene expression and glucose/lipid metabolism using cultured myotubes. Methods:, Myotube cultures were prepared for gene expression and metabolic studies from vastus lateralis skeletal muscle biopsies obtained from age-matched men (n = 11; 59 ± 2 years) and post-menopausal women (n = 10; 60 ± 1 years). Results:, mRNA expression of several genes involved in glucose and lipid metabolism was higher in skeletal muscle biopsies from female vs. male donors, but unaltered between the sexes in cultured myotubes. Basal and insulin-stimulated glucose uptake, as well as glucose incorporation into glycogen, was similar in myotube cultures derived from male vs. female donors. In males vs. females, insulin increased glucose uptake (1.3 ± 0.1 vs. 1.5 ± 0.1-fold respectively) and incorporation into glycogen (2.3 ± 0.3 vs. 2.0 ± 0.3-fold respectively) to the same extent. Basal fatty acid oxidation and rate of uptake/accumulation was similar between sexes. In response to the 5,AMP-activated protein kinase activator AICAR, lipid oxidation was increased to the same extent in myotubes established from male vs. female donors (1.6 ± 0.6 vs. 2.0 ± 0.3-fold respectively). Moreover, the AICAR-induced rate of uptake/accumulation was similar between sexes. Conclusion:, Differences in metabolic parameters and gene expression profiles between age-matched men and post-menopausal women noted in vivo are not observed in cultured human skeletal muscle cells. Thus, the sexual dimorphism in glucose and lipid metabolism is likely a consequence of systemic whole body factors, rather than intrinsic differences in the skeletal muscle proper. [source] Synthesis and degradation of type IV collagen in rat skeletal muscle during immobilization in shortened and lengthened positionsACTA PHYSIOLOGICA, Issue 4 2003A. M. Ahtikoski Abstract Aim:, Type IV collagen is a major protein in basement membranes surrounding and supporting skeletal muscle cells. In the present study, we tested the hypotheses that immobilization down-regulates synthesis and up-regulates degradation of type IV collagen in skeletal muscle. Methods:, mRNA level and concentration of type IV collagen as well as mRNA levels and activities of proteins involved in its degradation were analysed from soleus (SOL), gastrocnemius (GAS) and extensor digitorum longus muscles after immobilization in shortened and lengthened positions for 1, 3 and 7 days. Results:, Following immobilization, type IV collagen mRNA level was decreased in SOL and GAS suggesting down-regulated synthesis of this protein. The mRNA level and activity of matrix metalloproteinase-2 (proMMP-2) were increased in all muscles, while the activity of tissue inhibitor of metalloproteinase-2 was decreased in SOL and GAS. These findings reflect an increased capacity for degradation of type IV collagen. Conclusions: As a consequence of decreased synthesis/degradation ratio immobilization reduced the concentration of type IV collagen in all muscles. The regulation of type IV collagen through synthesis and/or degradation seems, however, to be muscle specific. Immobilization in lengthened position seems to delay and partly decrease the net degradation of type IV collagen. [source] Tropomyosin expression and dynamics in developing avian embryonic musclesCYTOSKELETON, Issue 5 2008Jushuo Wang Abstract The expression of striated muscle proteins occurs early in the developing embryo in the somites and forming heart. A major component of the assembling myofibrils is the actin-binding protein tropomyosin. In vertebrates, there are four genes for tropomyosin (TM), each of which can be alternatively spliced. TPM1 can generate at least 10 different isoforms including the striated muscle-specific TPM1, and TPM1,. We have undertaken a detailed study of the expression of various TM isoforms in 2-day-old (stage HH 10,12; 33 h) heart and somites, the progenitor of future skeletal muscles. Both TPM1, and TPM1, are expressed transiently in embryonic heart while TPM1, is expressed in somites. Both RT-PCR and in situ hybridization data suggest that TPM1, is expressed in embryonic heart whereas TPM1, is expressed in embryonic heart, and also in the branchial arch region of somites, and in the somites. Photobleaching studies of Yellow Fluorescent Protein-TPM1, and -TPM1, expressed in cultured avian cardiomyocytes revealed that the dynamics of the two probes was the same in both premyofibrils and in mature myofibrils. This was in sharp contrast to skeletal muscle cells in which the fluorescent proteins were more dynamic in premyofibrils. We speculate that the differences in the two muscles is due to the appearance of nebulin in the skeletal myocytes premyofibrils transform into mature myofibrils. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source] Spatiotemporal distribution of heparan sulfate epitopes during myogenesis and synaptogenesis: A study in developing mouse intercostal muscleDEVELOPMENTAL DYNAMICS, Issue 1 2002Guido J. Jenniskens Abstract Formation of a basal lamina (BL) ensheathing developing skeletal muscle cells is one of the earliest events in mammalian skeletal muscle myogenesis. BL-resident heparan sulfate proteoglycans have been implicated in various processes during myogenesis, including synaptic differentiation. However, attention has focused on the proteoglycan protein core, ignoring the glycosaminoglycan moiety mainly because of a lack of appropriate tools. Recently, we selected a panel of anti,heparan sulfate antibodies applied here to study the spatiotemporal distribution of specific heparan sulfate (HS) epitopes during myogenesis. In mouse intercostal muscle at embryonic day (E14), formation of acetylcholine receptor clusters at synaptic sites coincides with HS deposition. Although some HS epitopes show a general appearance throughout the BL, one epitope preferably clusters at synaptic sites but does so only from E16 onward. During elongation and maturation of primary myotubes, a process preceding secondary myotube development, significant changes in the HS epitope constitution of both synaptic and extrasynaptic BL were observed. As a whole, the data presented here strengthen previous observations on developmental regulation by BL components, and add to the putative roles of specific HS epitopes in myogenesis and synaptogenesis. © 2002 Wiley-Liss, Inc. [source] Effects of dietary fatty acids on insulin sensitivity and secretionDIABETES OBESITY & METABOLISM, Issue 6 2004Melania Manco Globalization and global market have contributed to increased consumption of high-fat, energy-dense diets, particularly rich in saturated fatty acids( SFAs). Polyunsaturated fatty acids (PUFAs) regulate fuel partitioning within the cells by inducing their own oxidation through the reduction of lipogenic gene expression and the enhancement of the expression of those genes controlling lipid oxidation and thermogenesis. Moreover, PUFAs prevent insulin resistance by increasing membrane fluidity and GLUT4 transport. In contrast, SFAs are stored in non-adipocyte cells as triglycerides (TG) leading to cellular damage as a sequence of their lipotoxicity. Triglyceride accumulation in skeletal muscle cells (IMTG) derives from increased FA uptake coupled with deficient FA oxidation. High levels of circulating FAs enhance the expression of FA translocase the FA transport proteins within the myocites. The biochemical mechanisms responsible for lower fatty acid oxidation involve reduced carnitine palmitoyl transferase (CPT) activity, as a likely consequence of increased intracellular concentrations of malonyl-CoA; reduced glycogen synthase activity; and impairment of insulin signalling and glucose transport. The depletion of IMTG depots is strictly associated with an improvement of insulin sensitivity, via a reduced acetyl-CoA carboxylase (ACC) mRNA expression and an increased GLUT4 expression and pyruvate dehydrogenase (PDH) activity. In pancreatic islets, TG accumulation causes impairment of insulin secretion. In rat models, ,-cell dysfunction is related to increased triacylglycerol content in islets, increased production of nitric oxide, ceramide synthesis and ,-cell apoptosis. The decreased insulin gene promoter activity and binding of the pancreas-duodenum homeobox-1 (PDX-1) transcription factor to the insulin gene seem to mediate TG effect in islets. In humans, acute and prolonged effects of FAs on glucose-stimulated insulin secretion have been widely investigated as well as the effect of high-fat diets on insulin sensitivity and secretion and on the development of type 2 diabetes. [source] Role of the C5b-9 complement complex in cell cycle and apoptosisIMMUNOLOGICAL REVIEWS, Issue 1 2001Horea G. Rus Summary: Assembly of C5b-9 on cell membranes results in transmembrane channels and causes cell death. When the number of C5b-9 molecules is limited, nucleated cells are able to escape cell death by endocytosis and by shedding of membranes bearing C5b-9. Sublytic C5b-9 induces proto-oncogenes, activates the cell cycle, and enhances cell survival. In addition, C5b-9 reverses the differentiated phenotype of post-mitotic cells, such as oligodendrocytes and skeletal muscle cells. The signal transduction pathways responsible for cell cycle activation by C5b-9 include Gi-mediated activation of extracellular signal-regulated kinase 1 and phosphatidylinositol 3-kinase (PI3-K). Cell survival enhanced by C5b-9 is mediated by the PI3-K/Akt pathway, which inhibits apoptosis through regulation of BAD. These findings indicate that complement activation and membrane assembly of sublytic C5b-9 play an important role in inflammation by promoting cell proliferation and by rescuing apoptotic cells. This work was supported by NIH grants NS36231 and NS15662 and by multiple sclerosis pilot award PP-696. [source] Autologous bone-marrow-derived mesenchymal stem cell transplantation into injured rat urethral sphincterINTERNATIONAL JOURNAL OF UROLOGY, Issue 4 2010Yoshiaki Kinebuchi Objectives: To evaluate the functional and histological recovery by autologous bone-marrow-derived mesenchymal stem cell (BMSC) transplantation into injured rat urethral sphincters. Methods: BMSC were harvested from female Sprague,Dawley retired breeder rats for later transplantation. The cells were cultured, and transfected with the green fluorescence protein gene. The urethral sphincters were injured by combined urethrolysis and cardiotoxin injection. One week after injury, the cultured BMSC were injected autologously into the periurethral tissues. Controls included sham-operated rats and injured rats injected with cell-free medium (CFM). Abdominal leak point pressures (LPP) were measured before and after surgery during the following 13 weeks. The urethras were then retrieved for histological evaluation. The presence of green-fluorescence-protein-labeled cells and the regeneration of skeletal muscles, smooth muscles, and peripheral nerves were evaluated by immunohistochemical staining. Results: LPP was significantly reduced in the injured rats. It increased gradually after transplantation, but there was no significant difference between the BMSC and CFM groups. In the BMSC group, transplanted cells survived and differentiated into striated muscle cells and peripheral nerve cells. The proportions of skeletal muscle cells and peripheral nerves in the urethra were significantly greater in the BMSC group compared to the CFM group. Conclusions: Despite a clear trend towards recovery of LPP in BMSC-transplanted urethras, no significant effect was detected. Further study is required for clinical applications for the treatment of stress urinary incontinence. [source] UV-embossed microchannel in biocompatible polymeric film: Application to control of cell shape and orientation of muscle cellsJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2006Jin-Ye Shen Abstract This article shows that ultra violet (UV) micro-embossing can be successfully used for fabricating biocompatible micropatterned films with microchannels separated by high aspect ratio microwalls. Eight series of micropatterns were investigated; the width of the microwall was either 10 or 25 ,m and that of the microchannel either 40, 80, 120, or 160 ,m. The material investigated was principally polyurethane diacrylate. The UV-embossed micropattern was extracted with methanol, converting the micropatterns from cytotoxic to biocompatible. The typical UV embossing method was modified by using a marginally adhesive polyester substrate, which facilitates demolding but is removable before methanol extraction to avoid fragmentation of the embossed micropatterns. The effect of the micropatterns on A7r5 smooth muscle cells and C2C12 skeletal muscle cells was investigated. The dimensions of both channel and wall have significant effects on the elongation of both muscle cells. In the narrower 40-,m channel, the C2C12 cells merged together to form myofibers. These results indicate that UV-embossed micropatterns may present a useful scaffold for in vitro cell shape and orientation control needed in vascular and muscle tissue engineering. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source] 1,25(OH)2 -vitamin D3 induces translocation of the vitamin D receptor (VDR) to the plasma membrane in skeletal muscle cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2002Daniela Capiati Abstract 1,25-dihydroxy-vitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D3, acts through two different mechanisms. In addition to regulating gene expression via the specific intracellular vitamin D receptor (VDR), 1,25(OH)2D3 induces rapid, non-transcriptional responses involving stimulation of transmembrane signal transduction pathways. The activation of second messengers supports the hypothesis that a membrane-bound steroid receptor similar to those that mediate peptide hormone biology exists. Skeletal muscle is a target tissue for 1,25(OH)2D3. Avian embryonic skeletal muscle cells (myoblasts/myotubes) have been shown to respond both genomically and non-genomically to the hormone. The present study provides evidence indicating that short-term treatment (1,10 min) with 1,25(OH)2D3 induces translocation of the VDR from the nuclear to the microsomal fraction in chick myoblasts. This translocation is blocked by colchicine, genistein, or herbimycin, suggesting the involvement of microtubular transport and tyrosine kinase/s in the relocation of the receptor. By isolation of plasma membranes, it was demonstrated that the hormone increases the amounts of VDR specifically in this fraction. These results suggest that the nuclear VDR may be the receptor that mediates the non-genomic effects of 1,25(OH)2D3 in chick myoblasts. J. Cell. Biochem. 86: 128,135, 2002. © 2002 Wiley-Liss, Inc. [source] Sphingosine 1-phosphate induces cell contraction via calcium-independent/Rho-dependent pathways in undifferentiated skeletal muscle cellsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2004L. Formigli We have previously shown that sphingosine 1-phosphate (S1P) can induce intracellular Ca2+ mobilization and cell contraction in C2C12 myoblasts and that the two phenomena are temporally unrelated. Although Ca2+ -independent mechanisms of cell contraction have been the focus of numerous studies on Ca2+ sensitization of smooth muscle, comparatively less studies have focused on the role that these mechanisms play in the regulation of skeletal muscle contractility. Phosphorylation and activation of myosin by Rho-dependent kinase mediate most of Ca2+ -independent contractile responses. In the present study, we examined the potential role of Rho/Rho-kinase cascade activation in S1P-induced C2C12 cell contraction. First, we showed that depletion of Ca2+, by pre-treatment with BAPTA, did not affect S1P-induced myoblastic contractility, whereas it abolished S1P-induced Ca2+ transients. These results correlated with the absence of troponin C and with the immature cytoskeletal organization of these cells. Experimental evidence demonstrating the involvement of Rho pathway in S1P-stimulated myoblast contraction included: the activation/translocation of RhoA to the membrane in response to agonist-stimulation in cells depleted of Ca2+ and the inhibition of dynamic changes of the actin cytoskeleton in cells where Rho functions had been inhibited either by overexpression of RhoGDI, a physiological inhibitor of GDP dissociation from Rho proteins, or by pretreatment with Y-27632, a specific Rho kinase inhibitor. Contribution of protein kinase C in this cytoskeletal rearrangement was also evaluated. However, the pretreatment with Gö6976 or rottlerin, specific inhibitors of PKC, and PKC,, respectively, failed to inhibit the agonist-induced myoblastic contraction. Single particle tracking of G-actin fluorescent probe was performed to statistically evaluate actin cytoskeletal dynamics in response to S1P. Stimulation with S1P was also able to increase the phosphorylation level of myosin light chain II. In conclusion, our results strongly suggest that Ca2+ -independent/Rho-Rho kinase-dependent pathways may exert an important role in S1P-induced myoblastic cell contraction. J. Cell. Physiol. 198: 1,11, 2004© 2003 Wiley-Liss, Inc. [source] Effects of aging and gender on the spatial organization of nuclei in single human skeletal muscle cellsAGING CELL, Issue 5 2010Alexander Cristea Summary The skeletal muscle fibre is a syncitium where each myonucleus regulates the gene products in a finite volume of the cytoplasm, i.e., the myonuclear domain (MND). We analysed aging- and gender-related effects on myonuclei organization and the MND size in single muscle fibres from six young (21,31 years) and nine old men (72,96 years), and from six young (24,32 years) and nine old women (65,96 years), using a novel image analysis algorithm applied to confocal images. Muscle fibres were classified according to myosin heavy chain (MyHC) isoform expression. Our image analysis algorithm was effective in determining the spatial organization of myonuclei and the distribution of individual MNDs along the single fibre segments. Significant linear relations were observed between MND size and fibre size, irrespective age, gender and MyHC isoform expression. The spatial organization of individual myonuclei, calculated as the distribution of nearest neighbour distances in 3D, and MND size were affected in old age, but changes were dependent on MyHC isoform expression. In type I muscle fibres, average NN-values were lower and showed an increased variability in old age, reflecting an aggregation of myonuclei in old age. Average MND size did not change in old age, but there was an increased MND size variability. In type IIa fibres, average NN-values and MND sizes were lower in old age, reflecting the smaller size of these muscle fibres in old age. It is suggested that these changes have a significant impact on protein synthesis and degradation during the aging process. [source] The Role of Cytokines in Regulating Protein Metabolism and Muscle FunctionNUTRITION REVIEWS, Issue 2 2002Elena Zoico M.D. Multiple lines of evidence suggest that cytokines influence different physiologic functions of skeletal muscle cells, including anabolic and catabolic processes and programmed cell death. Cytokines play an important role not only in muscle homeostasis, therefore, but also in the pathogenesis of different relevant clinical conditions characterized by alterations in protein metabolism. Recently discovered cytokines, such as ciliary neurotrophic factor and growth/differentiation factor-8, as well as the more studied tumor necrosis factor-,, interleukin-1, interleukin-6, and the interferons, have been implicated in the regulation of muscle protein turnover. Their postreceptor signaling pathways, proteolytic systems, and the mechanisms of protein synthesis inhibition involved in different catabolic conditions have been partially clarified. Moreover, recent studies have shown that cytokines can directly influence skeletal muscle contractility independent of changes in muscle protein content. Even though several gaps remain in our understanding, these observations may be useful in the development of strategies to control protein metabolism and muscle function in different clinical conditions. [source] Differential expression of skeletal muscle proteins in high-fat diet-fed rats in response to capsaicin feedingPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 15 2010Dong Hyun Kim Abstract In this study, the effects of capsaicin on expression of skeletal muscle proteins in Sprague,Dawley rats fed with a high-fat diet (HFD) were investigated. Rats were fed a HFD with or without capsaicin treatment for 8,wk. After HFD feeding, capsaicin-treated rats weighed an average of 8% less than those of the HFD control group. Gastrocnemius muscle tissue from lean and obese rats with or without capsaicin treatment was arrayed using 2-DE for detection of HFD-associated markers. Proteomic analysis using 2-DE demonstrated that 36 spots from a total of approximately 600 matched spots showed significantly different expression; 27 spots were identified as gastrocnemius muscle proteins that had been altered in response to capsaicin feeding, and 6 spots could not be identified by mass fingerprinting. Expression of various muscle proteins was determined by immunoblot analysis for the determination of molecular mechanisms, whereby capsaicin caused inhibition of adipogenesis. Immunoblot analysis revealed increased uncoupling protein 3 (UCP3) protein expression in HFD-fed rats, whereas contents were reduced with capsaicin treatment. Compared with the HFD control group, capsaicin treatment increased phosphorylation of AMP-activated protein kinase (AMPIC) CP3 and acetyl-CoA carboxylase (ACC). To support this result, we also analyzed in vitro differential protein expression in L6 skeletal muscle cells. These data suggest that the AMPK-ACC-malonyl-CoA metabolic signaling pathway is one of the targets of capsaicin action. To the best of our knowledge, this is the first proteomic study to report on analysis of diet-induced alterations of protein expression that are essential for energy expenditure in rat muscle. [source] Behavior of Cardiomyocytes and Skeletal Muscle Cells on Different Extracellular Matrix Components,Relevance for Cardiac Tissue EngineeringARTIFICIAL ORGANS, Issue 1 2007Karin Macfelda Abstract:, Myocardial cell transplantation in patients with heart failure is emerging as a potential therapeutic option to augment the function of remaining myocytes. Nevertheless, further investigations on basic issues such as ideal cell type continue to be evaluated. Therefore, the aim of our studies was to compare the performance of skeletal muscle cells and cardiomyocytes with respect to their proliferation rate and viability on different extracellular matrix components (EMCs). Rat cardiomyocytes (RCM) and rat skeletal muscle cells (RSMC) were cultured on EMCs such as collagen type I, type IV, laminin, and fibronectin. The components were used as "single coating" as well as "double coating." Proliferation rates were determined by proliferation assays on days 1, 2, 4, and 8 after inoculation of the cells. The most essential result is that collagen type I enhances the proliferation rate of RSMC but decreases the proliferation of RCM significantly. This effect is independent of the second EMC used for the double-coating studies. Other EMCs also influence cellular behavior, whereas the sequence of the EMCs is essential. Results obtained in our studies reveal the significant different proliferation behavior of RCM and RSMC under identical conditions. As skeletal muscle cells are also used in heart tissue engineering models, these results are essential and should be investigated in further studies to prove the applicability of skeletal muscle cells for heart tissue engineering purposes. [source] Cortisol and IGF-1 synergistically up-regulate taurine transport by the rat skeletal muscle cell line, L6BIOFACTORS, Issue 1-4 2004Sung-Hee Park Abstract This study was undertaken to evaluate effects of exercise-induced hormones, cortisol, IGF-1, and ,-endorphin, on the regulation of taurine transport activity in rat skeletal myoblasts, L6 cells. Challenge of L6 cells with cortisol (100 nM) for 24 hrs resulted in a 165% increase in taurine transport activity, 220% increase in Vmax of the taurine transporter, and 55% increase in taurine transporter/ ,-actin mRNA level compared with untreated control cells. Neither IGF-1 (1,100 nM) nor ,-endorphin (1,20 nM), added in the incubation medium separately for 24 hrs, affected taurine uptake by L6 cells. However, when cells were co-treated with IGF-1 (10 nM) plus cortisol (100,nM), taurine transport activity (37% increase, p < 0.05), Vmax of the transporter (54%, p < 0.05), and taurine transporter/ ,-actin mRNA level were further increased compared to the value for cells treated with cortisol alone. These results suggest that taurine transport by skeletal muscle cells appear to be synergistically up-regulated during a prolonged exercise via elevated levels of cortisol and IGF-1 in muscle. [source] Patterning of diverse mammalian cell types in serum free medium with photoablationBIOTECHNOLOGY PROGRESS, Issue 2 2009Vipra Dhir Abstract Integration of living cells with novel microdevices requires the development of innovative technologies for manipulating cells. Chemical surface patterning has been proven as an effective method to control the attachment and growth of diverse cell populations. Patterning polyelectrolyte multilayers through the combination of layer-by-layer self-assembly technique and photolithography offer a simple, versatile, and silicon compatible approach that overcomes chemical surface patterning limitations, such as short-term stability and low-protein adsorption resistance. In this study, direct photolithographic patterning of two types of multilayers, PAA (poly acrylic acid)/PAAm (poly acryl amide) and PAA/PAH (poly allyl amine hydrochloride), were developed to pattern mammalian neuronal, skeletal, and cardiac muscle cells. For all studied cell types, PAA/PAAm multilayers behaved as a cytophobic surface, completely preventing cell attachment. In contrast, PAA/PAH multilayers have shown a cell-selective behavior, promoting the attachment and growth of neuronal cells (embryonic rat hippocampal and NG108-15 cells) to a greater extent, while providing little attachment for neonatal rat cardiac and skeletal muscle cells (C2C12 cell line). PAA/PAAm multilayer cellular patterns have also shown a remarkable protein adsorption resistance. Protein adsorption protocols commonly used for surface treatment in cell culture did not compromise the cell attachment inhibiting feature of the PAA/PAAm multilayer patterns. The combination of polyelectrolyte multilayer patterns with different adsorbed proteins could expand the applicability of this technology to cell types that require specific proteins either on the surface or in the medium for attachment or differentiation, and could not be patterned using the traditional methods. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] Angiogenic gene modification of skeletal muscle cells to compensate for ageing-induced decline in bioengineered functional muscle tissueBJU INTERNATIONAL, Issue 7 2008Dawn M. Delo OBJECTIVE To explore the effects of ageing on the viability of bioengineered striated muscle tissue in vivo, and if this viability can be enhanced by concurrent neovascularization, as its utility for the treatment of stress urinary incontinence (SUI) might be reduced if muscle cells are derived from old patients. MATERIALS AND METHODS Myoblasts were obtained and expanded in culture from young (2 weeks), mature (3 months) and old (24 months) mice, and were engineered to express vascular endothelial growth factor (VEGF) to stimulate neovascularization. Myoblasts were injected subcutaneously into male nude mice and after 2 and 4 weeks, the engineered muscle tissues were harvested. RESULTS Bioengineered muscle tissues were formed in all groups, but the engineered muscles formed by myoblasts from old mice were smaller and less contractile. However, the bioengineered muscles expressing VEGF had a greater mass and better contractility in all age groups. CONCLUSION This pilot study showed that there was an age-related decline in the size and function of bioengineered muscle; however, there was an improvement in volume and function when the muscle cells were expressing VEGF. [source] MRP1/GS-X pump ATPase expression: is this the explanation for the cytoprotection of the heart against oxidative stress-induced redox imbalance in comparison to skeletal muscle cells?CELL BIOCHEMISTRY AND FUNCTION, Issue 1 2007Maurício S. Krause Abstract Striated muscle activity is always accompanied by oxidative stress (OxStress): the more intense muscle work and/or its duration, the more a redox imbalance may be attained. In spite of cardiac muscle functioning continuously, it is well known that the heart does not suffer from OxStress-induced damage over a broad physiological range. Although the expression of antioxidant enzymes may be of importance in defending heart muscle against OxStress, a series of combined antioxidant therapeutic approaches have proved to be mostly ineffective in avoiding cellular injury. Hence, additional mechanisms may be involved in heart cytoprotection other than antioxidant enzyme activities. The strong cardiotoxic effect of doxorubicin-induced cancer chemotherapy shed light on the possible role for multidrug resistance-associated proteins (MRP) in this context. Muscle activity-induced ,physiological' OxStress enhances the production of glutathione disulfide (GSSG) thus increasing the ratio of GSSG to glutathione (GSH) content inside the cells, which, in turn, leads to redox imbalance. Since MRP1 gene product (a GS-X pump ATPase) is a physiological GSSG transporter, adult Wistar rats were tested for MRP1 expression and activity in the heart and skeletal muscle (gastrocnemius), in as much as the latter is known to be extremely sensitive to muscle activity-induced OxS. MRP1 expression was completely absent in skeletal muscle. In contrast, the heart showed an exercise training-dependent induction of MRP1 protein expression which was further augmented (2.4-fold) as trained rats were challenged with a session of acute exercise. On the other hand, inducible expression of the 70-kDa heat shock protein (HSP70), a universal marker of cellular stress, was completely absent in the heart of sedentary and acutely exercised rats, whereas skeletal muscle showed a conspicuous exercise-dependent HSP70 expression, which decreased by 45% with exercise training. This effect was paralleled by a 58% decrease in GSH content in skeletal muscle which was even higher (an 80%-fall) after training thus leading to a marked redox imbalance ([GSSG]/[GSH] raised up to 38-fold). In the heart, GSH contents and [GSSG]/[GSH] ratio remained virtually unchanged even after exercise challenges, while GS-X pump activity was found to be 20% higher in the heart related to skeletal muscle. These findings suggest that an intrinsic higher capacity to express the MRP1/GS-X pump may dictate the redox status in the heart muscle thus protecting myocardium by preventing GSSG accumulation in cardiomyocytes as compared to skeletal muscle fibres. Copyright © 2006 John Wiley & Sons, Ltd. [source] |