Home About us Contact | |||
Size Increases (size + increase)
Kinds of Size Increases Selected AbstractsSeed weevils living on the edge: pressures and conflicts over body size in the endoparasitic Curculio larvaeECOLOGICAL ENTOMOLOGY, Issue 3 2009RAÚL BONAL Abstract 1.,Body size in parasitic insects can be subjected to contrasting selective pressures, especially if they complete their development within a single host. On the one hand, a larger body size is associated with a higher fitness. On the other hand, the host offers a discrete amount of resources, thus constraining the evolution of a disproportionate body size. 2.,The present study used the weevil Curculio elephas as a study model. Larvae develop within a single acorn, feeding on its cotyledons, and larval body size is strongly related to individual fitness. 3.,The relationship between larval and acorn size was negatively exponential. Larval growth was constrained in small acorns, which did not provide enough food for the weevils to attain their potential size. Larval size increased and levelled off in acorns over a certain size (inflexion point), in which cotyledons were rarely depleted. When there were more than one larva per acorn, a larger acorn was necessary to avoid food depletion. 4.,The results show that C. elephas larvae are sometimes endoparasitic, living on the edge of host holding capacity. If they were smaller they could avoid food depletion more easily, but the fitness benefits linked to a larger size have probably promoted body size increase. The strong negative effects of conspecific competition may have possibly influenced female strategy of laying a single egg per seed. 5.,Being larger and fitter, but always within the limits of the available host sizes, may be one main evolutionary dilemma in endoparasites. [source] Stimulation of reproductive growth in rainbow trout (Oncorhynchus mykiss) following exposure to treated sewage effluentENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2006Birgit Hoger Abstract Rainbow trout (Oncorhynchus mykiss) were exposed to 1.5 and 15% v/v secondary treated sewage effluent for 32 weeks in flow-through mesocosms. The exposure encompassed the full period of reproductive development for rainbow trout. Trout did not show any evidence of a dose-dependent change in growth. Fish exposed to 15% effluent were the only group to show mortality (5%) over the duration of the experiment. Trout at the highest effluent concentration had significantly higher liver size than reference water fish. Both male and female trout in the 15% exposure group also exhibited significantly higher gonad weight than the reference group. In female trout, this gonad size increase could be explained by higher egg numbers. Female and male trout both displayed a significant increase in plasma 17,-estradiol levels after exposure to 15% effluent, while neither sex had dose-dependent differences in plasma testosterone. Male trout displayed elevated vitellogenin levels and reduced plasma 11-ketotestosterone concentration after exposure to 15% effluent. Chemical examination of steroidal compounds, including both estrogens and androgens, in the wastewater revealed that only estrone was detectable at a mean concentration of 4.5 ng/L. It is assumed that the effects observed in trout exposed to 15% effluent were consistent with stimulation of reproductive development due to very low levels of estrogens. Overall, long-term exposure to treated sewage effluent containing low levels of estrogen did not have significant negative implications for reproductive development in rainbow trout. [source] METAMORPHOSIS AND NEOTENY: ALTERNATIVE PATHWAYS IN AN EXTINCT AMPHIBIAN CLADEEVOLUTION, Issue 7 2006Rainer R. Schoch Abstract The Branchiosauridae was a clade of small amphibians from the Permo-Carboniferous with an overall salamander-like appearance. The clade is distinguished by an extraordinary fossil record that comprises hundreds of well-preserved specimens, representing a wide range of ontogenetic stages. Branchiosaurids had external gills and weakly ossified skeletons, and due to this larval appearance their status as neotenic (perennibranchiate) froms has long been accepted. Despite their extensive fossil record large specimens with an adult morphology appeared to be lacking altogether, but recently two adult specimens were identified in a rich sample of Apateon gracilis collected in the 19th century from a locality near Dresden, Saxony. These specimens are unique among branchiosaurids in showing a high level of ossification, including bones that have never been reported in a branchiosaur. These highlight the successive formation of features believed to indicate terrestrial locomotion, as well as feeding on larger prey items. Moreover, these transformations occurred in a small time window (whereas the degree of size increase is used as a proxy of time) and the degree of concentration of developmental events in branchiosaurids is unique among tetrapods outside the lissamphibians. These specimens are compared with large adults of the neotenic branchiosaurid Apateon caducus from the Saar-Nahe Basin, which despite their largetr body size lack the features found in the adult. A. gracilis specimens. These specimens give new insight into patterns of metamorphosis (morphological transformation) in branchiosaurids that are believed to be correlated to a change of habitat, and clearly show that different life-history pathways comparable to those of modern salamanders were already estabilshed in this Paleozoic clade. [source] PERSPECTIVE: THE SIZE-COMPLEXITY RULEEVOLUTION, Issue 9 2004J. T. Bonner Abstract It is widely accepted that bigger entities have a greater division of labor than smaller ones and this is reflected in the fact that larger multicellular organisms have a corresponding increase in the number of their cell types. This rule is examined in some detail from very small organisms to large animals, and plants, and societies. Compared to other size-related rules, the size-complexity rule is relatively rough and approximate, yet clearly it holds throughout the whole range of living organisms, as well as for societies. The relationship between size and complexity is analyzed by examining the effects of size increase and decrease: size increase requires an increase in complexity, whereas size decrease permits, and sometimes requires, a decrease in complexity. Conversely, an increase or decrease in complexity permits, but does not require changes in size. An especially compelling argument for the close relation between size and complexity can be found in size quorum sensing in very small multicellular organisms. [source] The pattern of endocranial ontogenetic shape changes in humansJOURNAL OF ANATOMY, Issue 3 2009Simon Neubauer Abstract Humans show a unique pattern of brain growth that differentiates us from all other primates. In this study, we use virtual endocasts to provide a detailed description of shape changes during human postnatal ontogeny with geometric morphometric methods. Using CT scans of 108 dried human crania ranging in age from newborns to adults and several hundred landmarks and semi-landmarks, we find that the endocranial ontogenetic trajectory is curvilinear with two bends, separating three distinct phases of shape change. We test to what extent endocranial shape change is driven by size increase and whether the curved ontogenetic trajectory can be explained by a simple model of modular development of the endocranial base and the endocranial vault. The hypothesis that endocranial shape change is driven exclusively by brain growth is not supported; we find changes in endocranial shape after adult size has been attained and that the transition from high rates to low rates of size increase does not correspond to one of the shape trajectory bends. The ontogenetic trajectory of the endocranial vault analyzed separately is nearly linear; the trajectory of the endocranial base, in contrast, is curved. The endocranial vault therefore acts as one developmental module during human postnatal ontogeny. Our data suggest that the cranial base comprises several submodules that follow their own temporally and/or spatially disjunct growth trajectories. [source] Nordic rattle: the hoarse vocalization and the inflatable laryngeal air sac of reindeer (Rangifer tarandus)JOURNAL OF ANATOMY, Issue 2 2007Roland Frey Abstract Laryngeal air sacs have evolved convergently in diverse mammalian lineages including insectivores, bats, rodents, pinnipeds, ungulates and primates, but their precise function has remained elusive. Among cervids, the vocal tract of reindeer has evolved an unpaired inflatable ventrorostral laryngeal air sac. This air sac is not present at birth but emerges during ontogenetic development. It protrudes from the laryngeal vestibulum via a short duct between the epiglottis and the thyroid cartilage. In the female the growth of the air sac stops at the age of 2,3 years, whereas in males it continues to grow up to the age of about 6 years, leading to a pronounced sexual dimorphism of the air sac. In adult females it is of moderate size (about 100 cm3), whereas in adult males it is large (3000,4000 cm3) and becomes asymmetric extending either to the left or to the right side of the neck. In both adult females and males the ventral air sac walls touch the integument. In the adult male the air sac is laterally covered by the mandibular portion of the sternocephalic muscle and the skin. Both sexes of reindeer have a double stylohyoid muscle and a thyroepiglottic muscle. Possibly these muscles assist in inflation of the air sac. Head-and-neck specimens were subjected to macroscopic anatomical dissection, computer tomographic analysis and skeletonization. In addition, isolated larynges were studied for comparison. Acoustic recordings were made during an autumn round-up of semi-domestic reindeer in Finland and in a small zoo herd. Male reindeer adopt a specific posture when emitting their serial hoarse rutting calls. Head and neck are kept low and the throat region is extended. In the ventral neck region, roughly corresponding to the position of the large air sac, there is a mane of longer hairs. Neck swelling and mane spreading during vocalization may act as an optical signal to other males and females. The air sac, as a side branch of the vocal tract, can be considered as an additional acoustic filter. Individual acoustic recognition may have been the primary function in the evolution of a size-variable air sac, and this function is retained in mother,young communication. In males sexual selection seems to have favoured a considerable size increase of the air sac and a switch to call series instead of single calls. Vocalization became restricted to the rutting period serving the attraction of females. We propose two possibilities for the acoustic function of the air sac in vocalization that do not exclude each other. The first assumes a coupling between air sac and the environment, resulting in an acoustic output that is a combination of the vocal tract resonance frequencies emitted via mouth and nostrils and the resonance frequencies of the air sac transmitted via the neck skin. The second assumes a weak coupling so that resonance frequencies of the air sac are lost to surrounding tissues by dissipation. In this case the resonance frequencies of the air sac solely influence the signal that is further filtered by the remaining vocal tract. According to our results one acoustic effect of the air sac in adult reindeer might be to mask formants of the vocal tract proper. In other cervid species, however, formants of rutting calls convey essential information on the quality of the sender, related to its potential reproductive success, to conspecifics. Further studies are required to solve this inconsistency. [source] Grazing incidence small-angle X-ray scattering studies of the synthesis and growth of CdS quantum dots from constituent atoms in SiO2 matrixJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3-1 2003U.V. Desnica Grazing incidence small angle X-ray scattering was applied to study the synthesis and growth of CdS quantum dots (QDs) from Cd and S atoms implanted in SiO2. For a dose of 1017/cm2, the partial synthesis of CdS QDs occurred already during implantation, with only moderate size increase upon subsequent annealing up to Ta=1073 K. The dynamics of QD synthesis and growth were considerably different for just two times lower dose, where synthesis started only if the implanted samples were annealed at Ta = 773 K or higher, with a strong increase of the size of QDs upon annealing at higher Ta. The results suggest that high-dose implantation followed by low-temperature annealing could lead to better defined sizes and narrower size distributions of QDs. [source] Demography and population dynamics of Drosera anglica and D. rotundifoliaJOURNAL OF ECOLOGY, Issue 1 2004J.-F. Nordbakken Summary 1We studied demography and population dynamics of the sympatric perennial herbs Drosera anglica and D. rotundifolia on a boreal bog in SE Norway. Dry mass of 2872 D. anglica plants and 2467 D. rotundifolia plants (estimated from field morphological measurements) was used to classify plants into five species-specific size classes. Demographic changes within these two populations were followed from 1995 to 1999, and within segments (quartiles) along the water table gradient and the peat productivity gradient. 2Mortality was strongly size dependent, and varied between years, for both species; it was high for seedlings, low for the smallest mature rosettes and increased again for the largest mature rosettes. The proportion of fertile rosettes increased with increasing rosette size. Fecundity varied considerably between years, but little relative to gradient position. 3Growth rate (,) was > 1, except in the second year, when it fell to 0.572 for D. anglica and 0.627 for D. rotundifolia . For D. anglica small, but significant, differences were found between the two extremities of the water table gradient, and for D. rotundifolia between the second and the uppermost quartile. There was a tendency for D. anglica populations to have a lower growth rate in the most productive sites, whereas D. rotundifolia grew less on both low and high peat productivity. Elasticity analysis showed that stasis and size increase (primarily within mature stages) made major contributions to , for D. anglica in all years. 4The variance in population growth rate (var ,) was high between years, and higher for D. anglica than for D. rotundifolia , while the variance between quartiles along the two main gradients was low. Life-table response experiment (LTRE) analyses revealed that for both species, differences in probabilities of transitions within mature stages, and in growth to larger stages, contributed most to var ,. 5The effects of global warming are uncertain: drier growing seasons would affect Drosera populations negatively, while initially positive responses to a wetter climate may be balanced by competition from increased Sphagnum growth. [source] Cope's rule in cryptodiran turtles: do the body sizes of extant species reflect a trend of phyletic size increase?JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2006D. S. MOEN Abstract Cope's rule of phyletic size increase is questioned as a general pattern of body size evolution. Most studies of Cope's rule have examined trends in the paleontological record. However, neontological approaches are now possible due to the development of model-based comparative methods, as well as the availability of an abundance of phylogenetic data. I examined whether the phylogenetic distribution of body sizes in extant cryptodiran turtles is consistent with Cope's rule. To do this, I examined body size evolution in each of six major clades of cryptodiran turtles and also across the whole tree of cryptodirans (n = 201 taxa). Extant cryptodiran turtles do not appear to follow Cope's rule, as no clade showed a significant phyletic body size trend. Previous analyses in other extant vertebrates have also found no evidence for phyletic size increase, which is in contrast to the paleontological data that support the rule in a number of extinct vertebrate taxa. [source] Sexually antagonistic selection on primate sizeJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2002P. Lindenfors Abstract Male intrasexual selection in haplorhine primates has previously been shown to increase male size and to a lesser degree also female size. I address the following questions: (1) why does female size increase when the selection is on males, and (2) why does female size not increase to the same extent as that of males. The potential for correlational selection on females through increased resource competition was analysed with independent contrasts analyses. No such effect was found, nor did matched pairs comparisons reveal females to increase in size because of selection to bear larger male offspring. Instead further matched pairs analyses revealed higher female postpartum investment, as indicated by a longer lactation period, in more sexually selected species, also after correcting for body weight. Concerning the second question, independent contrast analyses showed that large size has had negative effects on female reproductive rate across the primate order. Matched-pairs analyses on haplorhines revealed that females of species in more polygynous clades have lower reproductive rates than females of species in less polygynous clades. This is also true after the effects of body weight are removed. These results, both when correcting for body weight and when not, suggest that sexual selection has shifted female size from one favouring female lifetime fecundity to one favouring male success in competition. This depicts antagonistic selection pressures on female size and a trade-off for females between the ecologically optimal size of their foremothers and the larger size that made their forefathers successful. [source] Microwave dielectric properties of NiFe2O4 nanoparticles ferritesMICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 6 2007C. P. L. Rubinger Abstract Nickel ferrite (NiFe2O4) was synthesized by the micelles mixing method, using lyophilized coconut oil. The method leads to the formation of ferrite nanoparticles. Nickel ferrite was prepared in coconut oil suspension and annealed during 4 h, at 400, 600, 800, 1000, and 1200°C. The X-ray diffraction (XRD) was applied to investigate the nanoparticle size dependence on the annealing temperature. Complex permittivity measurements were carried out in cavity resonators at 5.0 and 9.0 GHz, using the small perturbation theory. The main result is that the real part of the permittivity decreases with increasing annealing temperatures (3.6,2.4), while the imaginary part of the permittivity varies only for the lowest annealing temperatures, remaining low for the other samples (about 10,3). The X-ray diffractograms indicates that the nanoparticle size increase with annealing temperature, allowed the correlation between the nanoparticle size and the observed microwave dielectric response. © 2007 Wiley Periodicals, Inc. Microwave Opt Technol Lett 49: 1341,1343, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.22402 [source] Deciduous tooth crown size and asymmetry in strabismic childrenORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 4 2002T Heikkinen Structured Abstract Authors , Heikkinen T, Alvesalo L, Tienari J Objectives , To explore deciduous tooth crown dimensions in strabismic children and the relationship between the type of strabismus and tooth crown mesio-distal (M-D) and labio-lingual (L-L) size asymmetries. Material , Dental casts at mixed dentition of 2159 Collaborative Perinatal Study black and white children were measured, 123 of them strabismic at 1 year of age, age ranging from 6 to 12 years. Methods, Directional and fluctuating asymmetries in antimeric teeth were explored in various types of strabismus having unilateral, bilateral or alternating expression. ANOVA and T-square test were used for size comparisons and calculated asymmetries were explored by comparing the variances and Pearson correlations. Results , Strabismus was associated with significant M-D size increase of deciduous maxillary canines in black boys and white girls, black girls had size reduction in their mandibular canine, but white boys were unaffected. Right side size dominance was found in the strabismic children in the lower second deciduous molar M-D dimensions and in the children with alternating strabismus in their upper deciduous canine M-D dimensions. Children with unilateral strabismus had random fluctuating dental asymmetry in their upper deciduous second molar L-L dimensions when compared with healthy normals. Higher left-right correlations were found in lower second deciduous molar dimensions in strabismic girls when compared with that in controls and in strabismic boys, suggesting better developmental canalization in female. Conclusions , Asymmetries in the head area, such as promoted here in strabismic children, may have associations with asymmetries in the dentition, focusing the embryonal origins and timing of developmental processes. [source] Pinning energy of domain walls in MnZn ferrite filmsPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 11 2007V. H. Calle Abstract Mn Zn ferrite films deposited on (100) MgO substrates by rf sputtering technique with different thicknesses , in the range of 30-450 nm were studied. AFM images show grain size increase as film thickness increases. Grains with diameters between L , 70 and 700 nm were observed. The mono and multidomain regime in MnZn ferrite films and their effect on the pinning energy of domain walls are observed via Magneto-optical Kerr Effect, MOKE. At , , 300 nm, the coercive field, Hc, reaches a maximum value of 80 Oe. This result indicates the existence of a multidomain regime associated to a critical grain size, Lc. We used the Jiles-Atherton model (JAM) to discuss the experimental hysteresis loops. The k pinning parameter obtained from JAM shows a maximum value of k /,o = 67 Am2 for grains with Lc , 529 nm. The total energy per unit area E was correlated with k and D. We found a simple phenomenological relationship given by E , kD; where D is the magnetic domain width. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Oxygen transport and consumption by suspended cells in microgravity: A multiphase analysisBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2008Ohwon Kwon Abstract A rotating bioreactor for the cell/tissue culture should be operated to obtain sufficient nutrient transfer and avoid damage to the culture materials. Thus, the objective of the present study is to determine the appropriate suspension conditions for the bead/cell distribution and evaluate oxygen transport in the rotating wall vessel (RWV) bioreactor. A numerical analysis of the RWV bioreactor is conducted by incorporating the Eulerian,Eulerian multiphase and oxygen transport equations. The bead size and rotating speed are the control variables in the calculations. The present results show that the rotating speed for appropriate suspensions needs to be increased as the size of the bead/cell increases: 10 rpm for 200 µm; 12 rpm for 300 µm; 14 rpm for 400 µm; 18 rpm for 600 µm. As the rotating speed and the bead size increase from 10 rpm/200 µm to 18 rpm/600 µm, the mean oxygen concentration in the 80% midzone of the vessel is increased by ,85% after 1-h rotation due to the high convective flow for 18 rpm/600 µm case as compared to 10 rpm/200 µm case. The present results may serve as criteria to set the operating parameters for a RWV bioreactor, such as the size of beads and the rotating speed, according to the growth of cell aggregates. In addition, it might provide a design parameter for an advanced suspension bioreactor for 3-D engineered cell and tissue cultures. Biotechnol. Bioeng. 2008;99: 99,107. © 2007 Wiley Periodicals, Inc. [source] Against Bergmann's rule: fly sperm size increases with temperatureECOLOGY LETTERS, Issue 1 2002Wolf U. Blanckenhorn A long-standing school textbook biological rule, Bergmann's rule, asserts that animals (and their constituent parts) grow bigger when it is colder. This seems to hold for many warm-blooded animals, as well as for egg, cell and body size of most cold-blooded animals. A unifying mechanism producing this pattern has not been found. We here provide the first experimental evidence that the size of an important type of cell, namely sperm, increases (rather than decreases) with temperature in a cold-blooded animal, the yellow dung fly. By pointing to an exception, our work either questions the generality of one prominent category of explanation of Bergmann's rule, that of a physiological constraint, or alternatively suggests that sperm differ fundamentally in their physiology from other cells. [source] Density-dependent growth of young-of-the-year Atlantic salmon (Salmo salar) revisitedECOLOGY OF FRESHWATER FISH, Issue 1 2010I. Imre Imre I, Grant JWA, Cunjak RA. Density-dependent growth of young-of-the-year Atlantic salmon (Salmo salar) revisited. Ecology of Freshwater Fish 2010: 19: 1,6. © 2009 John Wiley & Sons A/S Abstract,,, The length of individual young-of-the-year (YOY) Atlantic salmon (Salmo salar) in Catamaran Brook decreases with increasing population density following a negative power curve. Because most of this decrease in growth rate occurs at low densities (<1 fish·m,2), (Imre et al. 2005; Journal of Animal Ecology, 74: 508,516) suggested that exploitation competition for drifting prey rather than space limitation might be responsible for this pattern. Recently, (Ward et al. 2007; Journal of Animal Ecology, 76: 135,138) showed that the negative power curve of growth rate versus density can be caused by other mechanisms and suggested that Imre et al.'s evidence for density-dependent growth would have been stronger if we had analysed final size versus initial density rather than final density. We examined (i) whether the negative power curve of size versus density was also apparent in an analysis of final size versus initial density and tested two predictions that emerge from Ward et al.'s model, (ii) the variance in body size increases with population density, and (iii) the maximum fish size at a site is density-independent. The final size of YOY salmon decreased with increasing initial density following a negative power curve. Our data did not provide strong support for the above predictions emerging from Ward et al.'s model. Our analyses of different years, sites and seasons were consistent with the hypothesis of density-dependent growth of YOY salmon. [source] The impact of problem size on decision processes: an experimental investigation on very large choice problems with support of decision support systemsEXPERT SYSTEMS, Issue 2 2004H. Wang Abstract: Choice problems as a class of decision problems have attracted great attention for the last couple of decades. Among the frameworks and supporting theories used in their study, two have had the greatest impact: bounded rationality and cost,benefit. Both theories could find support from past empirical studies under different conditions or problem environments. In the past studies, problem size has been shown to play an important role in decision-making. As problem size increases, a decision process may be detoured and the decision outcome may be different. In this paper we investigate the impact of problem size on three important aspects of the computer-aided decision process , strategy selection, decision time/effort, and decision quality , through very large choice problems. [source] R120G ,B-crystallin promotes the unfolding of reduced ,-lactalbumin and is inherently unstableFEBS JOURNAL, Issue 3 2005Teresa M. Treweek ,-Crystallin is the principal lens protein which, in addition to its structural role, also acts as a molecular chaperone, to prevent aggregation and precipitation of other lens proteins. One of its two subunits, ,B-crystallin, is also expressed in many nonlenticular tissues, and a natural missense mutation, R120G, has been associated with cataract and desmin-related myopathy, a disorder of skeletal muscles [Vicart P, Caron A, Guicheney P, Li Z, Prevost MC, Faure A, Chateau D, Chapon F, Tome F, Dupret JM, Paulin D & Fardeau M (1998) Nat Genet20, 92,95]. In the present study, real-time 1H-NMR spectroscopy showed that the ability of R120G ,B-crystallin to stabilize the partially folded, molten globule state of ,-lactalbumin was significantly reduced in comparison with wild-type ,B-crystallin. The mutant showed enhanced interaction with, and promoted unfolding of, reduced ,-lactalbumin, but showed limited chaperone activity for other target proteins. Using NMR spectroscopy, gel electrophoresis, and MS, we observed that, unlike the wild-type protein, R120G ,B-crystallin is intrinsically unstable in solution, with unfolding of the protein over time leading to aggregation and progressive truncation from the C-terminus. Light scattering, MS, and size-exclusion chromatography data indicated that R120G ,B-crystallin exists as a larger oligomer than wild-type ,B-crystallin, and its size increases with time. It is likely that removal of the positive charge from R120 of ,B-crystallin causes partial unfolding, increased exposure of hydrophobic regions, and enhances its susceptibility to proteolysis, thus reducing its solubility and promoting its aggregation and complexation with other proteins. These characteristics may explain the involvement of R120G ,B-crystallin with human disease states. [source] Oxidation of phenols by laccase and laccase-mediator systemsFEBS JOURNAL, Issue 21 2002Solubility, steric issues To investigate how solubility and steric issues affect the laccase-catalysed oxidation of phenols, a series of oligomeric polyphenol compounds, having increasing size and decreasing solubility in water, was incubated with laccase. The extent of substrate conversion, and the nature of the products formed in buffered aqueous solutions, were compared to those obtained in the presence of an organic cosolvent, and also in the presence of two mediating species, i.e. N -hydroxyphthalimide (HPI) and 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO). This approach showed not only an obvious role of solubility, but also a significant role of the dimension of the substrate upon the enzymatic reactivity. In fact, reactivity decreases as substrate size increases even when solubility is enhanced by a cosolvent. This effect may be ascribed to limited accessibility of encumbered substrates to the enzyme active site, and can be compensated through the use of the appropriate mediator. While TEMPO was highly efficient at enhancing the reactivity of large, less soluble substrates, HPI proved less effective. In addition, whereas the laccase/HPI system afforded the same products as laccase alone, the use of TEMPO provided a different product with high specificity. These results offer the first evidence of the role of ,oxidation shuttles' that the mediators of laccase may have, but also suggest two promising routes towards an environmentally friendly process for kraft pulp bleaching: (a) the identification of mediators which, once oxidized by laccase, are able to target strategic functional groups present in lignin, and (b) the introduction of those strategic functional groups in an appropriate pretreatment. [source] Preparation-Condition Dependence of Hybrid SiO2 -Coated CdTe Nanocrystals with Intense and Tunable PhotoluminescenceADVANCED FUNCTIONAL MATERIALS, Issue 8 2010Ping Yang Abstract When aqueously prepared CdTe nanocrystals (NCs) are coated with a SiO2 shell containing Cd ions and a sulfur source, they show a drastic increase in photoluminescence (PL) efficiency with a significant red shift and spectral narrowing after reflux. This is ascribed to the creation of a hybrid structure characterized by the formation of CdS-like clusters in the vicinity of the NCs in the SiO2 shell. Since these clusters are close to the NCs, their effective size increases to reduce the quantum size effect. The dependences of the PL properties on the preparation conditions are systematically investigated. The PL efficiency increases from 28% to 80% in the best case with a red shift of 80,nm. The PL behaviors differ from those of normal CdTe NCs and include less temperature quenching and longer PL lifetime. The SiO2 coating enables bioconjugation with IgG without deterioration of PL efficiency, making hybrid NCs amenable for bioapplication. [source] Seasonal trophic dynamics affect zooplankton community variabilityFRESHWATER BIOLOGY, Issue 11 2009BEATRIX E. BEISNER Summary 1. The degree to which communities are variable may be affected by the ecological conditions to which they are exposed and can affect their propensity to form alternative states. We examined the influence of two common ecological factors, predation and seasonal successional stage, on the variability in community composition of herbivorous pond plankton. In a highly replicated, two factor, mesocosm experiment we determined whether beta diversity was affected by seasonal successional stage of the community (two levels), by fish predation (presence/absence) or by their interaction. 2. Several significant changes were found in the composition of the rotifer, cladoceran and copepod assemblages. Most cladoceran abundances showed sharp declines in the presence of fish, while some rotifers, as well as their assemblage species richness, responded favourably to fish. The copepod assemblage was composed of omnivorous and carnivorous species, which added invertebrate predation to the experiment and which intensified as the season progressed. Copepods showed responses to fish predation that depended on seasonal successional stage of the initial community, because of changes in their stage structure and edibility as they grew from nauplii to adults. 3. Community variability was consistently high at the end of each month-long experimental period for both cladoceran and rotifer assemblages, except under two conditions. In the early season treatments, the rotifer assemblages were more consistent (lower beta diversity) in the presence of fish. This was attributed to high population growth rates for rotifers under these ecological conditions because of reduced copepod predation on them through a trophic cascade from fish. Low community variability was also observed in the late season for rotifers when fish were excluded and, as a result, they were exposed to high invertebrate predation from cyclopoid copepods. 4. Results from the early season support theoretical predictions that when community size increases, variability in composition should decline because of an increase in competitive processes over stochastic ones. Late season results suggest that a second mechanism, specialist predation, can also reduce prey community variability. Our study demonstrates that plankton communities may be more predictable under certain trophic web configurations and challenges ecologists to find ways to incorporate such inherent variability into experiments and community theory. [source] Horn size predicts physical performance in the beetle Euoniticellus intermedius (Coleoptera: Scarabaeidae)FUNCTIONAL ECOLOGY, Issue 4 2005S. P. LAILVAUX Summary 1In many animals, the size of secondary sexual ornaments is known to be related to the probability of victory in fights between males, and hence to fighting ability. However, few studies have attempted to link fighting ability to any physical performance measures. 2Here we show that horn size in the dung beetle Euoniticellus intermedius accurately predicts two types of whole-organism performance, independent of body size, that are likely to play an important role in male contests: the force required to pull a beetle out of a tunnel, and the distance the beetle was able to run before exhaustion (maximum exertion). 3Body length is also a statistically significant predictor of pulling force, but not of exertion, suggesting that horn size is a more reliable predictor of performance than body size alone, a result that is consistent with a previous finding that horn size becomes more important in determining victory in male,male contests as body size increases. 4This study is the first to establish direct links between whole-organism performance abilities, male armaments and fighting ability in the same species. Our findings suggest that physiological performance capacities are important factors underlying the evolution of signal expression in E. intermedius, and should be considered in future studies of the evolution of animal signalling. [source] A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flowJOURNAL OF FISH BIOLOGY, Issue 10 2009B. Jonsson The present paper reviews the effects of water temperature and flow on migrations, embryonic development, hatching, emergence, growth and life-history traits in light of the ongoing climate change with emphasis on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta. The expected climate change in the Atlantic is for milder and wetter winters, with more precipitation falling as rain and less as snow, decrease in ice-covered periods and frequent periods with extreme weather. Overall, thermal limits for salmonids are species specific. Scope for activity and growth and optimal temperature for growth increase with temperature to an optimal point before constrain by the oxygen content of the water. The optimal temperature for growth decreases with increasing fish size and varies little among populations within species, whereas the growth efficiency may be locally adapted to the temperature conditions of the home stream during the growth season. Indirectly, temperature influences age and size at smolting through its effect on growth. Time of spawning, egg hatching and emergence of the larvae vary with temperature and selective effects on time of first feeding. Traits such as age at first maturity, longevity and fecundity decrease with increasing temperature whilst egg size increases with temperature. Water flow influences the accessibility of rivers for returning adults and speed of both upstream and downstream migration. Extremes in water flow and temperature can decrease recruitment and survival. There is reason to expect a northward movement of the thermal niche of anadromous salmonids with decreased production and population extinction in the southern part of the distribution areas, migrations earlier in the season, later spawning, younger age at smolting and sexual maturity and increased disease susceptibility and mortality. Future research challenges are summarized at the end of the paper. [source] Radiotherapy for hepatocellular carcinoma: Systematic review of radiobiology and modeling projections indicate reconsideration of its useJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 4 2010Alan J Wigg Abstract Background and Aims:, External beam radiotherapy currently has a limited role in the treatment of hepatocellular carcinoma (HCC). The purpose of this article was to review available radiobiological data on HCC and normal liver and incorporate these data into radiobiological models that may be used to explain and improve treatment. Methods:, Volume doubling times of HCC were described and used to demonstrate growth of HCC with time, assuming both exponential and logistic growth. Radiosensitivity of HCC was described and used to demonstrate the probability of uncomplicated tumor control as tumor size increases. The relationship between tolerance of liver to irradiation and volume irradiated was examined. Results:, The median volume doubling time for untreated HCC was 130 days. HCC have a long period of subclinical growth. Radiosensitivity of HCC lies within the range of other tumors commonly treated with radiotherapy. When treating small volumes of normal liver, relatively high doses may be used with low risk of late radiation damage. There is a high probability of sterilizing subclinical disease and small HCC with tolerable radiation doses. Conclusion:, New radiobiological data, modeling, emerging clinical data and the advantages offered by standard external beam radiotherapy techniques suggest the need for reconsidering the use of radiotherapy and for new trials. [source] Mesomixing in semi-batch reaction crystallization and influence of reactor sizeAICHE JOURNAL, Issue 12 2004Marika Torbacke Abstract Experiments on semibatch reaction crystallization of benzoic acid are reported, in which hydrochloric acid was fed into an agitated solution of sodium benzoate. The influence of mixing and the influence of reactor size are examined on the product crystal mean size. The product mean size increases with increasing stirring rate and with decreasing feed rate. At low feed rates, the mean size increases at decreasing feed pipe diameter. At high feed rates the influence of the feed pipe diameter is more complex. Micromixing is of some importance in most experiments, but the rate of mesomixing especially governs the process. Mesomixing seems to be adequately described by the inertial-convective disintegration mechanism. In many aspects experimental results cannot be described by the turbulent-dispersion mechanism. The product mean size does not exhibit a clear dependence on reactor size, but depends more strongly on other parameters. Results from experiments from 1 L scale to 200 L scale can be correlated fairly well against a dimensionless number defined as the ratio of the total time of reactant feeding to the time constant of mixing. The best representation of the mixing time constant is obtained by making it directly proportional to the ratio of the feed pipe diameter and the linear velocity of the bulk flow passing the feed pipe. The proportionality constant can be calculated from turbulence data over the bulk flow at the feed point. © 2004 American Institute of Chemical Engineers AIChE J, 50: 3107,3119, 2004 [source] Raman spectroscopic analysis of azurite blackeningJOURNAL OF RAMAN SPECTROSCOPY, Issue 2 2008E. Mattei Abstract Azurite is a basic copper carbonate pigment largely employed in painting realization. The areas painted with azurite are easily alterable and are often less resistant than the other parts of artworks. The azurite alteration in a black pigment, the copper oxide (tenorite), has been studied by micro-Raman spectroscopy. The blackening can be due to thermal or chemical alterations: in the second case the alterations being due to the presence of alkaline conditions. Laser-induced degradation of azurite has been studied as a function of the grain size. The results show that the temperature of the grains decreases as the size increases, and azurite degrades into tenorite only below the critical value of 25 µm. To study the chemical alteration of azurite, the pigment has been applied on the plaster of terracotta samples and analyzed at different pH values by micro-Raman spectroscopy. As opposed to most part of the analytical techniques, it can detect the presence of both azurite and tenorite molecules in the same micro areas, and provides a valuable tool to determine azurite degradation. Copyright © 2008 John Wiley & Sons, Ltd. [source] Ice-storm disturbance and long-term forest dynamics in the Adirondack MountainsJOURNAL OF VEGETATION SCIENCE, Issue 2 2004Charles W. Lafon Ice storms cause periodic disturbance to temperate forests of eastern North America. They are the primary agents of disturbance in some eastern forests. In this paper, a forest gap model is employed to explore consequences of ice storms for the long-term dynamics of Tsuga canadensis-northem hardwoods forests. The gap model LINKAGES was modified to simulate periodic ice storm disturbance in the Adirondack Mountains of New York. To adapt the gap model for this purpose, field data on ice storm disturbance are used to develop a polytomous logistic regression model of tree damage. The logistic regression model was then incorporated into the modified forest gap model, LINK ADIR, to determine the type of damage sustained by each simulated tree. The logistic regression model predicts high probabilities of bent boles or severe bole damage (leaning, snapping, or uprooting) in small-diameter trees, and increasing probability of canopy damage as tree size increases. Canopy damage is most likely on gentle slopes; the probability of severe bole damage increases with increasing slope angle. In the LINKADIR simulations, tree damage type determines the probability of mortality; trees with severe bole damage are assigned the highest mortality rate. LINKADIR predicts Tsuga canadensis dominance in mesophytic old-growth forests not disturbed by ice storms. When ice storms are simulated, the model predicts Acer saccharum -dominated forests with higher species richness. These results suggest that ice storms may function as intermediate disturbances that enhance species richness in forested Adirondack landscapes. [source] Predicting the probability of progression-free survival in patients with small hepatocellular carcinomaLIVER TRANSPLANTATION, Issue 4 2002Steve J. Cheng Allocation of cadaveric livers to patients based on such objective medical urgency data as the Model for End-Stage Liver Disease (MELD) score may not benefit patients with small hepatocellular carcinomas (HCCs). To ensure that these patients have a fair opportunity of receiving a cadaveric organ, the risk for death caused by HCC and tumor progression beyond 5 cm should be considered. Using a Markov model, two hypothetical cohorts of patients with small hepatomas were assumed to have either (1) Gompertzian tumor growth, in which initial exponential growth decreases as tumor size increases; or (2) rapid exponential growth. The model tracked the number of patients who either died or had tumor progression beyond 5 cm. These results were used to back-calculate an equivalent MELD score for patients with small HCCs. All probabilities in the model were varied simultaneously using a Monte Carlo simulation. The Gompertzian growth model predicted that patients with a 1- and 4-cm tumor have 1-year progression-free survival rates of 70% (HCC-specific MELD score 6) and 66% (HCC-specific MELD score 8), respectively. When assuming rapid exponential growth, patients with a 1- and 4-cm tumor have progression-free survival rates of 69% (HCC-specific MELD score 6) and 12% (HCC-specific MELD score 24), respectively. Our model predicted that the risk for death caused by HCC or tumor progression beyond 5 cm should increase with larger initial tumor size in patients with small hepatomas. To ensure that these patients have a fair opportunity to receive a cadaveric organ, HCC-specific scores predicted by our model could be added to MELD scores of patients with HCC. [source] Litter size and latitude in a large mammal: the wild boar Sus scrofaMAMMAL REVIEW, Issue 3 2010Kirsten A. BYWATER ABSTRACT 1A positive relationship between clutch size or litter size and latitude exists in birds and many species of small mammal. Hitherto, however, analyses for large mammals have failed to provide evidence that litter sizes increase with latitude. 2We collated data from published studies of wild boar in Europe, to analyse the relationship between litter size and latitude in this widely distributed terrestrial mammal. 3Depending on the specific data set (whether only the most reliable data or all available data were included), latitude explained 58% to 72% of the variation in mean litter sizes across studies. On average, litter size increases by approximately 0.15 piglets per degree of latitude. 4A strong correlation between litter size and latitude for wild boar in Europe provides a starting point for demographic modelling of this species of both ecological and economic importance. 5The pattern for wild boar is consistent with Ashmole's explanation for the effects of latitude on reproduction. The contrast between our results and those generated for other large mammals may result from our focus on an herbivore in contrast to previous work which was focused on carnivores. Further work could usefully examine the extent of seasonality in the availability of resources for species of different dietary types. [source] VERTEBRAL OSTEOLOGY AND COMPLEXITY IN LAGENORHYNCHUS ACUTUS (DELPHINIDAE) WITH COMPARISON TO OTHER DELPHINOID GENERAMARINE MAMMAL SCIENCE, Issue 3 2005Emily A. Buchholtz Abstract The vertebral column of the Atlantic white-sided dolphin, Lagenorhynchus acutus, reflects the radical reorganization of the cetacean column for locomotion in water. Both posterior thoracic and anterior caudal vertebrae have been "lumbarized," and discontinuities occur within the caudal series at the synclinal point and fluke base. Morphology changes subtly as body size increases. Neural process height increases more rapidly, and centrum length more variably, than other vertebral parameters. As a result, large animals have disproportionately tall neural processes, short necks, long mid-body regions, and short flukes. Vertebral columns of large animals also show greater complexity (range, irregularity, and polarization) of centrum length than do those of smaller animals. Comparisons among dolphins reveal that complexity trends with respect to differentiation of parts run counter to the trend with respect to number of parts, a relationship predicted by Williston in 1914. [source] |