Home About us Contact | |||
Size Decreases (size + decrease)
Kinds of Size Decreases Selected AbstractsEffect of Counterions on Synthesis of Mesoporous Silica by the Route of TemplateJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2007Yang Yu-Xiang Mesoporous silica materials with ordered hexagonal and parallel-arranged pore channel have been synthesized using cetyl trimethylammonium bromide as a template and Na2SO4 as counterions. Their ordered mesostructures were characterized by infrared spectroscopy, X-ray diffraction patterns, scanning electron microscopy, transmission electron microscopy, and nitrogen sorption analysis. The effects of Na2SO4 concentration on variations of morphology, specific surface area, and pore size were discussed; the results show that a high concentration of Na2SO4 induces the formation of crystal threads with a "tubules-within-tubule" structure, and also leads to mesoporous silica materials with spherical, fabaceous, sheet-like, or prismatic shapes. The results also show that a high concentration of Na2SO4 can make the pore size decrease, but cannot change pore wall thickness, demonstrating the stability of the hexagonal-shaped pores. [source] Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat strawBIOTECHNOLOGY PROGRESS, Issue 2 2009Mads Pedersen Abstract In the worldwide quest for producing biofuels from lignocellulosic biomass, the importance of the substrate pretreatment is becoming increasingly apparent. This work examined the effects of reducing the substrate particle sizes of wheat straw by grinding prior to wet oxidation and enzymatic hydrolysis. The yields of glucose and xylose were assessed after treatments with a benchmark cellulase system consisting of Celluclast 1.5 L (Trichoderma reesei) and Novozym 188 ,-glucosidase (Aspergillus niger). Both wet oxidized and not wet oxidized wheat straw particles gave increased glucose release with reduced particle size. After wet oxidation, the glucose release from the smallest particles (53,149 ,m) reached 90% of the theoretical maximum after 24 h of enzyme treatment. The corresponding glucose release from the wet oxidized reference samples (2,4 cm) was ,65% of the theoretical maximum. The xylose release only increased (by up to 39%) with particle size decrease for the straw particles that had not been wet oxidized. Wet oxidation pretreatment increased the enzymatic xylose release by 5.4 times and the glucose release by 1.8 times across all particle sizes. Comparison of scanning electron microscopy images of the straw particles revealed edged, nonspherical, porous particles with variable surface structures as a result of the grinding. Wet oxidation pretreatment tore up the surface structures of the particles to retain vascular bundles of xylem and phloem. The enzymatic hydrolysis left behind a significant amount of solid, apparently porous structures within all particles size groups of both the not wet oxidized and wet oxidized particles. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] Age-dependent clutch size in a koinobiont parasitoidECOLOGICAL ENTOMOLOGY, Issue 1 2005Jelmer A. Elzinga Abstract., 1. The Lack clutch size theory predicts how many eggs a female should lay to maximise her fitness gain per clutch. However, for parasitoids that lay multiple clutches it can overestimate optimal clutch size because it does not take into account the future reproductive success of the parasitoid. 2. From egg-limitation and time-limitation models, it is theoretically expected that (i) clutch size decreases with age if host encounter rate is constant, and (ii) clutch size should increase with host deprivation and hence with age in host-deprived individuals. 3. Clutch sizes produced by ageing females of the koinobiont gregarious parasitoid Microplitis tristis Nees (Hymenoptera: Braconidae) that were provided daily with hosts, and of females ageing with different periods of host deprivation were measured. 4. Contrary to expectations, during the first 2 weeks, clutch size did not change with the age of the female parasitoid, neither with nor without increasing host-deprivation time. 5. After the age of 2 weeks, clutch size decreased for parasitoids that parasitised hosts daily. The decrease was accompanied by a strong decrease in available eggs. However, a similar decrease occurred in host-deprived parasitoids that did not experience egg depletion, suggesting that egg limitation was not the only factor causing the decrease in clutch size. 6. For koinobiont parasitoids like M. tristis that have low natural host encounter rates and short oviposition times, the costs of reproduction due to egg limitation, time limitation, or other factors are relatively small, if the natural lifespan is relatively short. 7. Koinobiont parasitoid species that in natural situations experience little variation in host density and host quality might not have strongly evolved the ability to adjust clutch size. [source] Low-Temperature Synthesis of Zinc Oxide NanoparticlesINTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 4 2006Po-Yi Wu Crystalline zinc oxide nanoparticles have been prepared by mixing aqueous solutions of zinc nitrate and hexamethylenetetramine (HMT) at 60°C and 80°C. Transmission electron microscopy and X-ray diffraction show that the ZnO nanoparticles of diameters ranging from 15,33 nm and 25,43 nm long are formed. Aspect ratio is observed to range from 1.18 to 1.74 at 60°C and 1.22 to 1.70 at 80°C as the HMT to zinc nitrate concentration ratio increases from 10 to 150. Nanoparticle size decreases as the concentration of HMT increases. Much larger ZnO particles are formed with ammonium hydroxide as a hydrolysis agent without HMT. In summary, HMT is an ammonium-hydroxide source in the reaction, a surfactant for retaining nanosize, and not necessarily a template for ZnO nucleation. [source] Fabrication and Structural Evaluation of Beaded Inorganic Nanostructures Using Soft-Electron-Beam Lithography,ADVANCED MATERIALS, Issue 1 2007S. Donthu Soft electron-beam lithography, a simple high-resolution patterning technique, is used to fabricate single-grain-wide nanostructures, as seen in the figure, of functional ceramic materials, such as zinc oxide and bismuth ferrite. Structural characterization of these nanostructures reveal that average grain size decreases with line width (see the plot in the figure). [source] Evolution of M1 crown size and cusp proportions in the genus HomoJOURNAL OF ANATOMY, Issue 5 2009Rolf Quam Abstract Previous research into tooth crown dimensions and cusp proportions has proved to be a useful way to identify taxonomic differences in Pliocene and Pleistocene fossil hominins. The present study has identified changes in both M1 crown size and cusp proportions within the genus Homo, with M1 overall crown size reduction apparently occurring in two main stages. The first stage (a reduction of ca. 17%) is associated with the emergence of Homo ergaster and Homo erectus sensu stricto. The second stage (a reduction of ca. 10%) occurs in Homo sapiens, but the reduced modern human M1 tooth crown size was only attained in Upper Paleolithic times. The absolute sizes of the individual cusps are highly positively correlated with overall crown size and dental reduction produces a reduction in the absolute size of each of the cusps. Most of the individual cusps scale isometrically with crown size, but the paracone shows a negative allometric relationship, indicating that the reduction in paracone size is less than in the other M1 cusps. Thus, the phylogenetically oldest cusp in the upper molars also seems to be the most stable cusp (at least in the M1). The most striking change in M1 cusp proportions is a change in the relative size of the areas of the paracone and metacone. The combination of a small relative paracone and a large relative metacone generally characterizes specimens attributed to early Homo, and the presence of this character state in Australopithecus and Paranthropus suggests it may represent the primitive condition for the later part of the hominin clade. In contrast, nearly all later Homo taxa, with the exception of Homo antecessor, show the opposite condition (i.e. a relatively large paracone and a relatively small metacone). This change in the relationship between the relative sizes of the paracone and metacone is related to an isometric reduction of the absolute size of the metacone. This metacone reduction occurs in the context of relative stability in the paracone as crown size decreases. Among later Homo taxa, both Homo heidelbergensis and Homo neanderthalensis show a further reduction of the metacone and an enlargement of the hypocone. Fossil and contemporary H. sapiens samples show a trend toward increasing the relative size of the protocone and decreasing the relative size of the hypocone. In Europe, modern human M1 cusp proportions are essentially reached during the Upper Paleolithic. Although some variation was documented among the fossil taxa, we suggest that the relative size of the M1 paracone and metacone areas may be useful for differentiating the earliest members of our genus from subsequent Homo species. [source] Density-dependent growth of young-of-the-year Atlantic salmon Salmo salar in Catamaran Brook, New BrunswickJOURNAL OF ANIMAL ECOLOGY, Issue 3 2005I. IMRE Summary 1While density-dependent mortality and emigration have been widely reported in stream salmonid populations, density-dependent growth is less frequently detected. A recent study suggests that density-dependent growth in stream salmonids occurs at low densities, whereas density-dependent mortality and emigration occur at high densities. 2To test the hypothesis that density-dependent growth occurs primarily at low rather than at high densities, we examined the relationship between average fork length and population density of young-of-the-year (YOY) Atlantic salmon at the end of the growing season using a 10-year data set collected on Catamaran Brook, New Brunswick. We tested whether (1) average body size decreases with increasing density; (2) the effect of density on average body size is greatest at low densities; (3) growth rate will decrease most rapidly at low effective densities [,(fork length)2]; (4) density-dependent growth is weaker over space than over time; and (5) the strength of density-dependent growth increases with the size of the habitat unit (i.e. spatial scale) when compared within years, but not between years. 3There was a strong negative relationship between the average body size and population density of YOY Atlantic salmon in the autumn, which was best described by a negative power curve. Similarly, a negative power curve provided the best fit to the relationship between average body size and effective density. Most of the variation in average body size was explained by YOY density, with year, location and the density of 1+ and 2+ salmon accounting for a minor proportion of the variation. 4The strength of density-dependent growth did not differ significantly between comparisons over space vs. time. Consistent with the last prediction, the strength of density-dependent growth increased with increasing spatial scale in the within-year, but not in the between-year comparisons. 5The effect of density on growth was strongest at low population densities, too low to expect interference competition. Stream salmonid populations may be regulated by two mechanisms: density-dependent growth via exploitative competition at low densities, perhaps mediated by predator-induced reductions in drift rate, and density-dependent mortality and emigration via interference competition at high densities. [source] Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processingJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2010Ljiljana Veselinovi A series of cobalt-exchanged hydroxyapatite (CoHAp) powders with different Ca/Co ratios and nominal unit-cell contents Ca10,xCox(PO4)6(OH)2, x = 0, 0.5, 1.0, 1.5 and 2.0, were synthesized by hydrothermal treatment of a precipitate at 473,K for 8,h. Based on ICP (inductively coupled plasma) emission spectroscopy analysis, it was established that the maximum amount of cobalt incorporation saturated at ,12,at.% under these conditions. The effects of cobalt content on the CoHAp powders were investigated using ICP emission spectroscopy, particle size analysis, transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) analyses as well as X-ray powder diffraction (XRPD) including Rietveld analysis. According to XRPD, all the materials are single-phase HAp and CoHAp of low crystallinity. Rietveld analysis shows that Co enrichment causes the c cell parameter to decrease at a faster rate than the a cell parameter. A microstructural analysis showed anisotropic X-ray line broadening due to crystallite size reduction. In CoHAp there is significant crystal elongation in [001], and the average size decreases with increasing cobalt content. The crystallite morphology transforms from rod-like for the pure HAp to lamellae at the highest degree of Co substitution. The results of Rietveld refinement (symmetry, size and morphology of the crystallites) were confirmed by TEM and HRTEM analysis. [source] Computational investigation of the mechanisms of particle separation and "fish-hook" phenomenon in hydrocyclonesAICHE JOURNAL, Issue 7 2010B. Wang Abstract The motion of solid particles and the "fish-hook" phenomenon in an industrial classifying hydrocyclone of body diameter 355 mm is studied by a computational fluid dynamics model. In the model, the turbulent flow of gas and liquid is modeled using the Reynolds Stress Model, and the interface between the liquid and air core is modeled using the volume of fluid multiphase model. The outcomes are then applied in the simulation of particle flow described by the stochastic Lagrangian model. The results are analyzed in terms of velocity and force field in the cyclone. It is shown that the pressure gradient force plays an important role in particle separation, and it balances the centrifugal force on particles in the radial direction in hydrocyclones. As particle size decreases, the effect of drag force whose direction varies increases sharply. As a result, particles have an apparent fluctuating velocity. Some particles pass the locus of zero vertical velocity (LZVV) and join the upward flow and have a certain moving orbit. The moving orbit of particles in the upward flow becomes wider as their size decreases. When the size is below a critical value, the moving orbit is even beyond the LZVV. Some fine particles would recircuit between the downward and upward flows, resulting in a relatively high separation efficiency and the "fish-hook" effect. Numerical experiments were also extended to study the effects of cyclone size and liquid viscosity. The results suggest that the mechanisms identified are valid, although they are quantitatively different. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] A Study of the Role of Regionalization in the Generation of Aggregation Error in Regional Input ,Output ModelsJOURNAL OF REGIONAL SCIENCE, Issue 3 2002Michael L. Lahr Although the need for aggregation in input ,output modelling has diminished with the increases in computing power, an alarming number of regional studies continue to use the procedure. The rationales for doing so typically are grounded in data problems at the regional level. As a result many regional analysts use aggregated national input ,output models and trade ,adjust them at this aggregated level. In this paper, we point out why this approach can be inappropriate. We do so by noting that it creates a possible source of model misapplication (i.e., a direct effect could appear for a sector where one does not exist) and also by finding that a large amount of error (on the order of 100 percent) can be induced into the impact results as a result of improper aggregation. In simulations, we find that average aggregation error tends to peak at 81 sectors after rising from 492 to 365 sectors. Perversely, error then diminishes somewhat as the model size decreases further to 11 and 6 sectors. We also find that while region , and sector ,specific attributes influence aggregation error in a statistically significantly manner, their influence on the amount of error generally does not appear to be large. [source] Microwave Plasma Synthesis of Nanostructured ,-Al2O3 PowdersJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2003L. Fu Nanostructured Al2O3 powders have been synthesized by combustion of aluminum powder in a microwave oxygen plasma, and characterized by X-ray diffraction and electron microscopy. The main phase is ,-Al2O3, with a small amount of ,-Al2O3. The particles are truncated octahedral in shape, with mean particle sizes of 21,24 nm. The effect of reaction chamber pressure on the phase composition and the particle size was studied. The ,-alumina content increases and the mean particle size decreases with decreasing pressure. No ,-Al2O3 appears in the final particles. Electron microscopy studies find that a particle may contain more than one phase. [source] Single-Source Sol-Gel Synthesis of Nanocrystalline ZnAl2O4: Structural and Optical PropertiesJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2001Sanjay Mathur Nanometer-sized zinc aluminate (ZnAl2O4) particles were synthesized from heterometal alkoxides, [ZnAl2(OR)8], possessing an ideal cation stoichiometry for the ZnAl2O4 spinel. ZnAl2O4 is formed at 400°C, which is the lowest temperature reported for the formation of monophasic ZnAl2O4. 27Al magic-angle spinning nuclear magnetic resonance spectroscopy revealed that ZnAl2O4 possesses an inverse structure at <900°C, while the normal spinel phase is observed at higher temperatures. The homogeneity of the in-depth composition and Zn:Al stoichiometry (1:2) was confirmed by electron spectroscopy for chemical analysis. Evaluation of the valence-band spectra of ZnAl2O4 and ZnS suggested that the hybridization of O 2p and Zn 3d orbitals is responsible for lowering the bandgap in the latter. The average crystallite size showed an exponential relationship to the calcination temperature (X-ray diffractometry and transmission electron microscopy data). The optical spectra of different spinel powders (average particle sizes, 20,250 nm) showed that the absorption edge exhibits a blue shift as particle size decreases. [source] Electrical Conductivity and Lattice Defects in Nanocrystalline Cerium Oxide Thin FilmsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2001Toshio Suzuki The results of the electrical conductivity and Raman scattering measurements of CeO2 thin films obtained by a polymeric precursor spin-coating technique are presented. The electrical conductivity has been studied as a function of temperature and oxygen activity and correlated with the grain size. When compared with microcrystalline samples, nanocrystalline materials show enhanced electronic conductivity. The transition from extrinsic to intrinsic type of conductivity has been observed as the grain size decreases to <100 nm, which appears to be related to a decrease in the enthalpy of oxygen vacancy formation in CeO2. Raman spectroscopy has been used to analyze the crystalline quality as a function of grain size. A direct comparison has been made between the defect concentration calculated from coherence length and nonstoichiometry determined from electrical measurements. [source] Contribution of the largest events to suspended sediment transport across the USALAND DEGRADATION AND DEVELOPMENT, Issue 2 2010J. C. Gonzalez-Hidalgo Abstract This work analyses the contribution of the largest events to suspended sediment transport on the continental scale. The analysis is based on the United States Geological Survey (USGS) Suspended Sediment and Ancillary database. Data were obtained from 1314 catchments, comprising more than 2,500,000 daily events. The total number of days in the dataset amounts to 10,000 years. Catchments are of different sizes and belong to distinct climatic environments; they are distributed for the analysis according to USA hydrological divisions (HDs). The main objective of the research is to examine the effect of the n -largest event on the total suspended sediment load over recorded periods, and to discuss different behaviour between HDs. To accomplish this, the daily events at each catchment are ranked by magnitude, and then the percentage represented by the n -largest event (e.g. 3-largest, 5-largest, 10-largest, 15-largest, 20-largest, 25-largest) is calculated from the total accumulated load. Results indicate that suspended sediment transported by the 25-largest events represents on average more than 50,per cent of the total load. The California HD, mostly under Mediterranean climatic conditions, accounts for the highest percentage of sediment transport across conterminous USA, whatever n -largest daily events are selected. There, the 3-largest events contribute, on average, 38,per cent of the total sediment load, the 10-largest events represent 61,per cent and the 25-largest events produce more than 76,per cent of the total sediment transport. Overall, the contribution of largest daily events seems not to depend on the climatic conditions in small catchments (<100,km2) and, in addition, the percentage of suspended sediment increases over all HDs, while, at the same time, the catchment size decreases. Finally, we discuss differences between catchments across the USA, according to climatic and historical (i.e. land use) factors. Copyright © 2009 John Wiley & Sons, Ltd. [source] Downstream Fining and Sorting of Gravel Clasts in the Braided Rivers of mid-Canterbury, New ZealandNEW ZEALAND GEOGRAPHER, Issue 2 2004Greg Browne ABSTRACT Gravel clast size dimensions have been determined in the Rakaia, Ashburton, and Rangitata rivers by measuring 100 clasts at representative sample locations along each river. In all rivers, gravel size decreases and sorting improves downstream for mean, D50, and D90 fractions of the bed material. Clast size entering the sea is similar in all rivers (30,40 mm b-axis dimension), despite large variations in transport distance, input size of clasts at their gorges, and discharge. The greatest size reduction occurs in the Rangitata River which has the shortest transport distance and steepest gradient. Rates of downstream clast size reduction are greater than would be assumed from Sternberg's Law, suggesting that additional factors, other than physical abrasion, such as sorting and selective entrainment operate. [source] Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic Coastal Plain, AlaskaPERMAFROST AND PERIGLACIAL PROCESSES, Issue 4 2005K. M. Hinkel Abstract Landsat-7 ETM,+ scenes were acquired for the western Arctic Coastal Plain of Alaska extending from 152° to 162° W longitude. A segmentation algorithm was used to classify lakes and drained thaw lake basins (DTLBs) exceeding 1,ha in size. A total of 13,214 lakes and 6539 DTLBs were identified. Several indices were obtained from the image processing software and used for a comparative analysis of lakes and basins including object size, goodness of elliptic fit, shape complexity, shape asymmetry, and orientation of the major axis. Nonparametric statistical analyses indicate that lakes and basins share similar orientation only. Three subregions of the western Arctic Coastal Plain were identified based on landscape age, as demarcated by ancient shorelines. The surfaces become progressively older inland and include the Younger Outer Coastal Plain, the Outer Coastal Plain, and the oldest Inner Coastal Plain. Lakes and basins in all subregions have statistically similar orientation, indicating that summer wind direction has not changed appreciably over the past several thousand years. Basin orientation is less clustered than lake orientation. Lakes are highly elliptical, while basins have more complex shapes. Lake coverage (%) is fairly constant across the three subregions, while DTLB coverage decreases on older surfaces. Lake and basin size decreases on progressively older surfaces, but the number of features per unit area increases. It is uncertain if surface age is responsible for differences in regional metrics as an analysis of the Inner Coastal Plain demonstrates significant internal variation. Distance from the coast, ground ice content, surficial sediments, and local relief may also influence lake morphometry. Copyright © 2005 John Wiley & Sons, Ltd. [source] Effects of maternal age on reproductive traits and fitness components of the offspring in the bruchid beetle, Callosobruchus chinensis (Coleoptera: Bruchidae)PHYSIOLOGICAL ENTOMOLOGY, Issue 4 2002Shin-Ichi Yanagi Abstract. In many insect species, the size and number of eggs decrease with maternal age. Thus, both the size and number of eggs must be considered to know the exact cost of reproduction with maternal age. The resource depletion hypothesis was examined in the bruchid beetle Callosobruchus chinensis. The hypothesis explains why the egg size decreases with maternal age based on the decline of the female's reproductive capacity. A decrease was found in reproductive effort (= egg size × the number of eggs) and the fitness component of offspring with maternal age. The effects of the female's nutritional status on the relationship between maternal age and the reproductive effort of females with and without food and water were also examined. The results indicate that the decrease in size and number of eggs with maternal age can be explained by the resource depletion hypothesis in C. chinensis. [source] Distributional properties of estimated capability indices based on subsamplesQUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, Issue 2 2003Kerstin Vännman Abstract Under the assumption of normality, the distribution of estimators of a class of capability indices, containing the indices , , and , is derived when the process parameters are estimated from subsamples. The process mean is estimated using the grand average and the process variance is estimated using the pooled variance from subsamples collected over time for an in-control process. The derived theory is then applied to study the use of hypothesis testing to assess process capability. Numerical investigations are made to explore the effect of the size and number of subsamples on the efficiency of the hypothesis test for some indices in the studied class. The results for and indicate that, even when the total number of sampled observations remains constant, the power of the test decreases as the subsample size decreases. It is shown how the power of the test is dependent not only on the subsample size and the number of subsamples, but also on the relative location of the process mean from the target value. As part of this investigation, a simple form of the cumulative distribution function for the non-central -distribution is also provided. Copyright © 2003 John Wiley & Sons, Ltd. [source] Effect of sodium chloride on the formation and stability of n-dodecane nanoemulsions by the PIT methodASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2010Jeffery Chin Long Liew Abstract This paper provides a fundamental study of the effect of sodium chloride on the formation and stability of n-dodecane/nonionic surfactant (Brij30)/NaCl nanoemulsions produced by the phase inversion temperature (PIT) method. Nanoemulsions are an emulsion system containing droplets from 20 to 200 nm and widely used in cosmetics and pharmaceutical industries. The PIT method was chosen due to its low energy and surfactant usage to produce the nanoemulsions by heating and quenching an emulsion system. The changes of conductivity with temperatures were continuously monitored to determine phase inversion, and are found to be the same in low surfactant concentrations. PIT point was found to decrease with NaCl concentration especially from 5 to 7 wt% Brij30. At the storage temperature (20 °C), the initial droplet size decreases with NaCl concentration; however, the decrement only occurs from 4 to 7 wt% Brij30 while no nanoemulsions can be produced at 8 wt%. By adding salt, the surfactant concentration needed for the most stable nanoemulsions is reduced to 6 wt% from 7 wt%. Therefore, similar stable nanoemulsions can be produced with less surfactant in a brine system. Furthermore, most of the ageing brine-continuous nanoemulsions could be reproduced to their freshly prepared state by heating process but not for the most stable nanoemulsions. Copyright © 2010 Curtin University of Technology and John Wiley & Sons, Ltd. [source] Effects of operating conditions on particle size in sonocrystallizationASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2010Hussein Oubani Abstract This work presents systematic investigations on sonocrystallization to elucidate the effects of key variables on sonocrystallization product properties. A novel continuous flow sonocrystallization apparatus was used to prepare NaCl microparticles from a NaCl,ethanol,water antisolvent system. By implementing a full factorial experimental design, we investigated the effects of ultrasonic power (75,225 W), antisolvent feed rate (0.5,6.5 l/h), system flow rate (2.8,4.1 l/min) and sonication time (5,30 min) on product crystal size. Data from these experiments were regressed to develop an empirical model that was found to be in agreement with experiments. The model identified the interaction between sonication power and system flow to be rather significant. Model simulations found that particle size decreases when antisolvent feed rate or ultrasonic power increases. This was found to be in contrast to increasing the system flow which resulted in larger particle sizes. The regression model was subsequently used to determine optimal operating conditions that minimize mean size, as smaller sizes are commonly required for pharmaceuticals such as for inhalation particles. These optimal values were found to be as follows: antisolvent flow rate = 6.5 l/h, power ultrasound = 225 W, system flow = 2.8 l/min and sampling time = 15 min. The optimal mean size predicted at these conditions was 28.6 ± 5.7 µm which is very close to the observed value of 27.6 µm. A high-speed camera was used to visualize the ultrasonic irradiation in the sonoreactor and was crucial in explaining the significant interactive effect of sonication power and system flow on crystal size. Copyright © 2010 Curtin University of Technology and John Wiley & Sons, Ltd. [source] Evolution of the Congo rift basin, West Africa: an inorganic geochemical record in lacustrine shalesBASIN RESEARCH, Issue 3-4 2000N. B. Harris The inorganic geochemistry and mineralogy of synrift lacustrine shales from the Early Cretaceous Congo rift basin provide insight into source terrane, palaeoclimate and evolution of rift topography. The basin formed in a Late Proterozoic metamorphic belt as South America and Africa began to separate. Within the synrift section, a late rift sequence (Marnes Noires and Argilles Vertes Formations) can be distinguished from an underlying active rift sequence (Vandji, Sialivakou and Djeno Formations), based on diminished faulting and more uniform subsidence. Provenance did not vary significantly until deposition of the youngest part of the rift sequence. Al2O3/TiO2 and K2O/Na2O ratios, generally constant, rise sharply in upper Marnes Noires and Argilles Vertes, demonstrating decreased contribution from Proterozoic volcanic sources. Parameters including (quartz+feldspar)/total clay and SiO2/Al2O3 suggest that depositional systems reorganized during lower Djeno deposition, possibly due to rejuvenation of faulting. Grain size decreases in the late rift section; however, the parameter SiO2/Al2O3 increases. This is attributed to chemical or biogenic deposition of silica. The proportion of chemical sedimentation increases upward in the synrift section, peaking in the Marnes Noires Formation, where the concentrations of organic carbon and carbonate and the proportion of SiO2 to siliciclastic-associated elements reach a maximum. This is interpreted as resulting from input of high dissolved chemical load in the late rift stage and is attributed to increased chemical weathering in the basin as rift topography diminishes. The slower flow of ground and surface water to the rift lakes enhanced weathering and dissolution of minerals in rocks and sediments surrounding the rift lake. The carbon isotopic composition of carbonate decreases from +6 at the base of the rift section, associated with carbon from Late Proterozoic carbonates, to 0, indicating increasing contribution of light carbon; the source of light carbon is interpreted as vegetation, which increases as rift topography degrades. [source] Simulation of Barium Sulfate Precipitation using CFD and FM-PDF Modeling in a Continuous Stirred TankCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 12 2007Z. Wang Abstract A mixing-precipitation model combining computational fluid dynamics (CFD), finite-mode PDF (probability density function) model, population balance and kinetic modeling has been proposed to simulate the barium sulfate precipitation process in a continuous stirred tank agitated by a Rushton turbine. The effect of various operating conditions such as impeller speed, feed concentration, feed position and mean residence time on the barium sulfate precipitation process is clearly demonstrated. It is shown that the mean crystal size increases by increasing the impeller speed and mean residence time. However, when the feed concentration is increased, the mean crystal size decreases. The predictions are in reasonable agreement with the experimental data in the literature. [source] Surfactant Effects on Morphology and Switching of Holographic PDLCs Based on Polyurethane Acrylates,CHEMPHYSCHEM, Issue 1 2007Ju Yeon Woo Abstract Effects of octanoic acid (OA) on the morphology, diffraction efficiency, and electro-optic properties of the transmission mode of holographic polymer,dispersed liquid crystals (HPDLC) are studied. Droplet size decreases with increasing OA content (0,9,%), and this leads to a monotonic increase in off-state diffraction with increasing OA content. However, on-state diffraction decreases with increasing applied voltage and shows a minimum at 6,% OA, for which minimum switching voltage (5 V,,m,1) and maximum contrast ratio (10) are obtained. Rise time and decay time decrease with increasing OA content. Interposition of OA between polymer and LC droplet is theoretically predicted by the spreading coefficient (,>0) calculated on the basis of the solubility parameter, while the coalescence behavior of droplets is described by a dimensionless group () called coalescence number. [source] Radiolysis of Confined Water: Hydrogen Production at a High Dose RateCHEMPHYSCHEM, Issue 12 2005Sophie Le Caër Dr. Abstract The production of molecular hydrogen in the radiolysis of dried or hydrated nanoporous controlled-pore glasses (CPG) has been carefully studied using 10 MeV electron irraditation at high dose rate. In all cases, the H2 yield increases when the pore size decreases. Moreover, the yields measured in dried materials are two orders of magnitude smaller than those obtained in hydrated glasses. This proves that the part of the H2 coming from the surface of the material is negligible in the hydrated case. Thus, the measured yields correspond to those of nanoconfined water. Moreover, these yields are not modified by the presence of potassium bromide, which is a hydroxyl radical scavenger. This experimental observation shows that the back reaction between H2 and HO. does not take place in such confined environments. These porous materials have been characterized before and after irradiation by means of Fourier-transform infrared (FT-IR) spectroscopy, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) techniques, which helps to understand the elementary processes taking place in this type of environment, especially the protective effect of water on the surface in the case of hydrated glasses. [source] Nanoscale lead and noble gas inclusions in aluminum: Structures and propertiesMICROSCOPY RESEARCH AND TECHNIQUE, Issue 5-6 2004Erik Johnson Abstract Transmission electron microscopy has been used for structural and physical characterization of nanoscale inclusions of lead and noble gases in aluminum. When the inclusion sizes approach nanoscale dimensions, many of their properties are seen to deviate from similar properties in bulk and in most cases the deviations will increase as the inclusion sizes decrease. Binary alloys of lead and noble gases with aluminum are characterized by extremely low mutual solubilities and inclusions will, therefore, exist as practically pure components embedded in the aluminum matrix. Furthermore, the thermal vacancy mobility in aluminum at and above room temperature is sufficiently high to accommodate volume strains associated with the inclusions thus leading to virtually strain free crystals. The inclusions grow in parallel cube alignment with the aluminum matrix and have a cuboctahedral shape, which reflects directly the anisotropy of the interfacial energies. Inclusions in grain boundaries can have single crystalline or bicrystalline morphology that can be explained from a generalized Wulff analysis such as the ,-vector construction. The inclusions have been found to display a variety of nanoscale features such as high Laplace pressure, size-dependent superheating during melting, deviations from the Wulff shape displaying magic size effects, a shape dependence of edge energy, and so on. All these effects have been observed and monitored by TEM using conventional imaging conditions and high-resolution conditions in combination with in-situ analysis at elevated temperatures. Microsc. Res. Tech. 64:356,372, 2004. © 2004 Wiley-Liss, Inc. [source] |