Home About us Contact | |||
Site-directed Mutagenesis (site-directed + mutagenesi)
Selected AbstractsProtein-Based Capacitive Biosensors: a New Tool for Structure-Activity Relationship StudiesELECTROANALYSIS, Issue 24 2008Alessia Mortari Abstract The present work reports a new application of a protein-based capacitive biosensor as an in vitro assay for the selectivity study of the bacterial periplasmic protein MerP and four MerP variants. The modified MerP proteins were produced by site-directed mutagenesis of the heavy metal associated motif (HMA). The MerP and modified MerPs selectivity for copper, zinc, cadmium and mercury bivalent ions were investigated and compared. The variations in the proteins affinity were related to the primary structure of the HMA motifs. Key amino acids for copper coordination of metalloproteins that contain the metal binding sequence Gly-Met-Thr-Cys-xxx-xxx-Cys were identified. The results brought insights valid for Menkes and Wilson ATPases. The protein-based capacitive biosensors were a simple and useful tool for studying structure-activity relationships of proteins. [source] Homologous desensitization of guanylyl cyclase A, the receptor for atrial natriuretic peptide, is associated with a complex phosphorylation patternFEBS JOURNAL, Issue 11 2010Juliane Schröter Atrial natriuretic peptide (ANP), via its guanylyl cyclase A (GC-A) receptor and intracellular guanosine 3,,5,-cyclic monophosphate production, is critically involved in the regulation of blood pressure. In patients with chronic heart failure, the plasma levels of ANP are increased, but the cardiovascular actions are severely blunted, indicating a receptor or postreceptor defect. Studies on metabolically labelled GC-A-overexpressing cells have indicated that GC-A is extensively phosphorylated, and that ANP-induced homologous desensitization of GC-A correlates with receptor dephosphorylation, a mechanism which might contribute to a loss of function in vivo. In this study, tandem MS analysis of the GC-A receptor, expressed in the human embryonic kidney cell line HEK293, revealed unambiguously that the intracellular domain of the receptor is phosphorylated at multiple residues: Ser487, Ser497, Thr500, Ser502, Ser506, Ser510 and Thr513. MS quantification based on multiple reaction monitoring demonstrated that ANP-provoked desensitization was accompanied by a complex pattern of receptor phosphorylation and dephosphorylation. The population of completely phosphorylated GC-A was diminished. However, intriguingly, the phosphorylation of GC-A at Ser487 was selectively enhanced after exposure to ANP. The functional relevance of this observation was analysed by site-directed mutagenesis. The substitution of Ser487 by glutamate (which mimics phosphorylation) blunted the activation of the GC-A receptor by ANP, but prevented further desensitization. Our data corroborate previous studies suggesting that the responsiveness of GC-A to ANP is regulated by phosphorylation. However, in addition to the dephosphorylation of the previously postulated sites (Ser497, Thr500, Ser502, Ser506, Ser510), homologous desensitization seems to involve the phosphorylation of GC-A at Ser487, a newly identified site of phosphorylation. The identification and further characterization of the specific mechanisms involved in the downregulation of GC-A responsiveness to ANP may have important pathophysiological implications. Structured digital abstract ,,MINT-7713870, MINT-7713887: PMCA (uniprotkb:P20020) and GC-A (uniprotkb:P18910) colocalize (MI:0403) by fluorescence microscopy (MI:0416) [source] Sulfide : quinone oxidoreductase (SQR) from the lugworm Arenicola marina shows cyanide- and thioredoxin-dependent activityFEBS JOURNAL, Issue 6 2008Ursula Theissen The lugworm Arenicola marina inhabits marine sediments in which sulfide concentrations can reach up to 2 mm. Although sulfide is a potent toxin for humans and most animals, because it inhibits mitochondrial cytochrome c oxidase at micromolar concentrations, A. marina can use electrons from sulfide for mitochondrial ATP production. In bacteria, electron transfer from sulfide to quinone is catalyzed by the membrane-bound flavoprotein sulfide : quinone oxidoreductase (SQR). A cDNA from A. marina was isolated and expressed in Saccharomyces cerevisiae, which lacks endogenous SQR. The heterologous enzyme was active in mitochondrial membranes. After affinity purification, Arenicola SQR isolated from yeast mitochondria reduced decyl-ubiquinone (Km = 6.4 ,m) after the addition of sulfide (Km = 23 ,m) only in the presence of cyanide (Km = 2.6 mm). The end product of the reaction was thiocyanate. When cyanide was substituted by Escherichia coli thioredoxin and sulfite, SQR exhibited one-tenth of the cyanide-dependent activity. Six amino acids known to be essential for bacterial SQR were exchanged by site-directed mutagenesis. None of the mutant enzymes was active after expression in yeast, implicating these amino acids in the catalytic mechanism of the eukaryotic enzyme. [source] The phosphate site of trehalose phosphorylase from Schizophyllum commune probed by site-directed mutagenesis and chemical rescue studiesFEBS JOURNAL, Issue 5 2008Christiane Goedl Schizophyllum commune,,,-trehalose phosphorylase utilizes a glycosyltransferase-like catalytic mechanism to convert its disaccharide substrate into ,- d -glucose 1-phosphate and ,- d -glucose. Recruitment of phosphate by the free enzyme induces ,,,-trehalose binding recognition and promotes the catalytic steps. Like the structurally related glycogen phosphorylase and other retaining glycosyltransferases of fold family GT-B, the trehalose phosphorylase contains an Arg507-XXXX-Lys512 consensus motif (where X is any amino acid) comprising key residues of its putative phosphate-binding sub-site. Loss of wild-type catalytic efficiency for reaction with phosphate (kcat/Km = 21 000 m,1·s,1) was dramatic (,107 -fold) in purified Arg507,Ala (R507A) and Lys512,Ala (K512A) enzymes, reflecting a corresponding change of comparable magnitude in kcat (Arg507) and Km (Lys512). External amine and guanidine derivatives selectively enhanced the activity of the K512A mutant and the R507A mutant respectively. Analysis of the pH dependence of chemical rescue of the K512A mutant by propargylamine suggested that unprotonated amine in combination with H2PO4,, the protonic form of phosphate presumably utilized in enzymatic catalysis, caused restoration of activity. Transition state-like inhibition of the wild-type enzyme A by vanadate in combination with ,,,-trehalose (Ki = 0.4 ,m) was completely disrupted in the R507A mutant but only weakened in the K512A mutant (Ki = 300 ,m). Phosphate (50 mm) enhanced the basal hydrolase activity of the K512A mutant toward ,,,-trehalose by 60% but caused its total suppression in wild-type and R507A enzymes. The results portray differential roles for the side chains of Lys512 and Arg507 in trehalose phosphorylase catalysis, reactant state binding of phosphate and selective stabilization of the transition state respectively. [source] Characterization of Mycobacterium tuberculosis nicotinamidase/pyrazinamidaseFEBS JOURNAL, Issue 4 2008Hua Zhang The nicotinamidase/pyrazinamidase (PncA) of Mycobacterium tuberculosis is involved in the activation of the important front-line antituberculosis drug pyrazinamide by converting it into the active form, pyrazinoic acid. Mutations in the pncA gene cause pyrazinamide resistance in M. tuberculosis. The properties of M. tuberculosis PncA were characterized in this study. The enzyme was found to be a 20.89 kDa monomeric protein. The optimal pH and temperature of enzymatic activity were pH 7.0 and 40 °C, respectively. Inductively coupled plasma-optical emission spectrometry revealed that the enzyme was an Mn2+/Fe2+ -containing protein with a molar ratio of [Mn2+] to [Fe2+] of 1 : 1; furthermore, the external addition of either type of metal ion had no apparent effect on the wild-type enzymatic activity. The activity of the purified enzyme was determined by HPLC, and it was shown that it possessed similar pyrazinamidase and nicotinamidase activity, by contrast with previous reports. Nine PncA mutants were generated by site-directed mutagenesis. Determination of the enzymatic activity and metal ion content suggested that Asp8, Lys96 and Cys138 were key residues for catalysis, and Asp49, His51, His57 and His71 were essential for metal ion binding. Our data show that M. tuberculosis PncA may bind metal ions in a manner different from that observed in the case of Pyrococcus horikoshii PncA. [source] Mapping of the active site of glutamate carboxypeptidase II by site-directed mutagenesisFEBS JOURNAL, Issue 18 2007Petra Ml, ochová Human glutamate carboxypeptidase II [GCPII (EC 3.4.17.21)] is recognized as a promising pharmacological target for the treatment and imaging of various pathologies, including neurological disorders and prostate cancer. Recently reported crystal structures of GCPII provide structural insight into the organization of the substrate binding cavity and highlight residues implicated in substrate/inhibitor binding in the S1, site of the enzyme. To complement and extend the structural studies, we constructed a model of GCPII in complex with its substrate, N -acetyl- l -aspartyl- l -glutamate, which enabled us to predict additional amino acid residues interacting with the bound substrate, and used site-directed mutagenesis to assess the contribution of individual residues for substrate/inhibitor binding and enzymatic activity of GCPII. We prepared and characterized 12 GCPII mutants targeting the amino acids in the vicinity of substrate/inhibitor binding pockets. The experimental results, together with the molecular modeling, suggest that the amino acid residues delineating the S1, pocket of the enzyme (namely Arg210) contribute primarily to the high affinity binding of GCPII substrates/inhibitors, whereas the residues forming the S1 pocket might be more important for the ,fine-tuning' of GCPII substrate specificity. [source] Substrate and inhibitor specificity of Mycobacterium avium dihydrofolate reductaseFEBS JOURNAL, Issue 13 2007Ronnie A. Böck Dihydrofolate reductase (EC 1.5.1.3) is a key enzyme in the folate biosynthetic pathway. Information regarding key residues in the dihydrofolate-binding site of Mycobacterium avium dihydrofolate reductase is lacking. On the basis of previous information, Asp31 and Leu32 were selected as residues that are potentially important in interactions with dihydrofolate and antifolates (e.g. trimethoprim), respectively. Asp31 and Leu32 were modified by site-directed mutagenesis, giving the mutants D31A, D31E, D31Q, D31N and D31L, and L32A, L32F and L32D. Mutated proteins were expressed in Escherichia coli BL21(DE3)pLysS and purified using His-Bind resin; functionality was assessed in comparison with the recombinant wild type by a standard enzyme assay, and growth complementation and kinetic parameters were evaluated. All Asp31 substitutions affected enzyme function; D31E, D31Q and D31N reduced activity by 80,90%, and D31A and D31L by >,90%. All D31 mutants had modified kinetics, ranging from three-fold (D31N) to 283-fold (D31L) increases in Km for dihydrofolate, and 12-fold (D31N) to 223 077-fold (D31L) decreases in kcat/Km. Of the Leu32 substitutions, only L32D caused reduced enzyme activity (67%) and kinetic differences from the wild type (seven-fold increase in Km; 21-fold decrease in kcat/Km). Only minor variations in the Km for NADPH were observed for all substitutions. Whereas the L32F mutant retained similar trimethoprim affinity as the wild type, the L32A mutation resulted in a 12-fold decrease in affinity and the L32D mutation resulted in a seven-fold increase in affinity for trimethoprim. These findings support the hypotheses that Asp31 plays a functional role in binding of the substrate and Leu32 plays a functional role in binding of trimethoprim. [source] The two N-glycans present on bovine Pofut1 are differently involved in its solubility and activityFEBS JOURNAL, Issue 5 2007Céline Loriol O-Fucosylation is a post-translational glycosylation in which an O -fucose is covalently attached to the hydroxyl group of a specific serine or threonine residue. This modification occurs within the consensus sequence C2X4,5(S/T)C3 present on epidermal growth factor-like repeats of several proteins, including the Notch receptors and their ligands. The enzyme responsible for the addition of O -fucose to epidermal growth factor-like repeats is protein O -fucosyltransferase 1. Protein O -fucosyltransferase 1-mediated O -fucosylation is essential in Notch signaling, folding and targeting to the cell surface. Here, we studied the expression pattern of protein O -fucosyltransferase 1 in cattle and showed that the active enzyme is present in all tissues examined from embryo and adult as a glycoprotein with two N-glycans. By comparing protein O -fucosyltransferase 1 sequences available in databases, we observed that mammalian protein O -fucosyltransferase 1 enzymes possess two putative N-glycosylation sites, and that only the first is conserved among bilaterians. To gain more insight regarding the significance of N-glycans on protein O -fucosyltransferase 1, we substituted, by site-directed mutagenesis, bovine protein O -fucosyltransferase 1 N65, N163 or both, with L or Q. We demonstrated that the loss of N-glycan on N163 caused a slight decrease in protein O -fucosyltransferase 1 activity. In contrast, glycosylation of N65 was crucial for protein O -fucosyltransferase 1 functionality. Loss of glycosylation at N65 resulted in aggregation of protein O -fucosyltransferase 1, suggesting that N-glycosylation at this site is essential for proper folding of the enzyme. [source] Crystal structure and enzymatic properties of a bacterial family 19 chitinase reveal differences from plant enzymesFEBS JOURNAL, Issue 21 2006Ingunn A. Hoell We describe the cloning, overexpression, purification, characterization and crystal structure of chitinase G, a single-domain family 19 chitinase from the Gram-positive bacterium Streptomyces coelicolor A3(2). Although chitinase G was not capable of releasing 4-methylumbelliferyl from artificial chitooligosaccharide substrates, it was capable of degrading longer chitooligosaccharides at rates similar to those observed for other chitinases. The enzyme was also capable of degrading a colored colloidal chitin substrate (carboxymethyl-chitin,remazol,brilliant violet) and a small, presumably amorphous, subfraction of ,-chitin and ,-chitin, but was not capable of degrading crystalline chitin completely. The crystal structures of chitinase G and a related Streptomyces chitinase, chitinase C [Kezuka Y, Ohishi M, Itoh Y, Watanabe J, Mitsutomi M, Watanabe T & Nonaka T (2006) J Mol Biol358, 472,484], showed that these bacterial family 19 chitinases lack several loops that extend the substrate-binding grooves in family 19 chitinases from plants. In accordance with these structural features, detailed analysis of the degradation of chitooligosaccharides by chitinase G showed that the enzyme has only four subsites (, 2 to +,2), as opposed to six (, 3 to +,3) for plant enzymes. The most prominent structural difference leading to reduced size of the substrate-binding groove is the deletion of a 13-residue loop between the two putatively catalytic glutamates. The importance of these two residues for catalysis was confirmed by a site-directed mutagenesis study. [source] Calcium modulates endopeptidase 24.15 (EC 3.4.24.15) membrane association, secondary structure and substrate specificityFEBS JOURNAL, Issue 12 2005Vitor Oliveira The metalloendopeptidase 24.15 (EP24.15) is ubiquitously present in the extracellular environment as a secreted protein. Outside the cell, this enzyme degrades several neuropeptides containing from 5 to 17 amino acids (e.g. gonadotropin releasing hormone, bradykinin, opioids and neurotensin). The constitutive secretion of EP24.15 from glioma C6 cells was demonstrated to be stimulated linearly by reduced concentrations of extracellular calcium. In the present report we demonstrate that extracellular calcium concentration has no effect on the total amount of the extracellular (cell associated + medium) enzyme. Indeed, immuno-cytochemical analyses by confocal and electron microscopy suggested that the absence of calcium favors the enzyme shedding from the plasma membrane into the medium. Two putative calcium-binding sites on EP24.15 (D93 and D159) were altered by site-directed mutagenesis to investigate their possible contribution to binding of the enzyme at the cell surface. These mutated recombinant proteins behave similarly to the wild-type enzyme regarding enzymatic activity, secondary structure, calcium sensitivity and immunoreactivity. However, immunocytochemical analyses by confocal microscopy consistently show a reduced ability of the D93A mutant to associate with the plasma membrane of glioma C6 cells when compared with the wild-type enzyme. These data and the model of the enzyme's structure as determined by X-ray diffraction suggest that D93 is located at the enzyme surface and is consistent with membrane association of EP24.15. Moreover, calcium was also observed to induce a major change in the EP24.15 cleavage site on distinctive fluorogenic substrates. These data suggest that calcium may be an important modulator of ep24.15 cell function. [source] Site-directed mutagenesis and footprinting analysis of the interaction of the sunflower KNOX protein HAKN1 with DNAFEBS JOURNAL, Issue 1 2005Mariana F. Tioni The interaction of the homeodomain of the sunflower KNOX protein HAKN1 with DNA was studied by site-directed mutagenesis, hydroxyl radical footprinting and missing nucleoside experiments. Binding of HAKN1 to different oligonucleotides indicated that HAKN1 prefers the sequence TGACA (TGTCA), with changes within the GAC core more profoundly affecting the interaction. Footprinting and missing nucleoside experiments using hydroxyl radical cleavage of DNA showed that HAKN1 interacts with a 6-bp region of the strand carrying the GAC core, covering the core and nucleotides towards the 3, end. On the other strand, protection was observed along an 8-bp region, comprising two additional nucleotides complementary to those preceding the core. Changes in the residue present at position 50 produced proteins with different specificities. An I50S mutant showed a preference for TGACT, while the presence of lysine shifted the preference to TGACC, suggesting that residue 50 interacts with nucleotide(s) 3, to GAC. Mutation of Lys54,Val produced a protein with reduced affinity and relaxed specificity, able to recognize the sequence TGAAA, while the conservative change of Arg55,Lys completely abolished binding to DNA. Based on these results, we propose a model for the interaction of HAKN1 with DNA in which helix III of the homeodomain accommodates along the major groove with Arg55, Asn51, Lys54 and Ile50, establishing specific contacts with bases of the GACA sequence or their complements. This model can be extended to other KNOX proteins given the conservation of these amino acids in all members of the family. [source] Probing the unfolding region of ribonuclease A by site-directed mutagenesisFEBS JOURNAL, Issue 20 2004Jens Köditz Ribonuclease A contains two exposed loop regions, around Ala20 and Asn34. Only the loop around Ala20 is sufficiently flexible even under native conditions to allow cleavage by nonspecific proteases. In contrast, the loop around Asn34 (together with the adjacent ,-sheet around Thr45) is the first region of the ribonuclease A molecule that becomes susceptible to thermolysin and trypsin under unfolding conditions. This second region therefore has been suggested to be involved in early steps of unfolding and was designated as the unfolding region of the ribonuclease A molecule. Consequently, modifications in this region should have a great impact on the unfolding and, thus, on the thermodynamic stability. Also, if the Ala20 loop contributes to the stability of the ribonuclease A molecule, rigidification of this flexible region should stabilize the entire protein molecule. We substituted several residues in both regions without any dramatic effects on the native conformation and catalytic activity. As a result of their remarkably differing stability, the variants fell into two groups carrying the mutations: (a) A20P, S21P, A20P/S21P, S21L, or N34D; (b) L35S, L35A, F46Y, K31A/R33S, L35S/F46Y, L35A/F46Y, or K31A/R33S/F46Y. The first group showed a thermodynamic and kinetic stability similar to wild-type ribonuclease A, whereas both stabilities of the variants in the second group were greatly decreased, suggesting that the decrease in ,G can be mainly attributed to an increased unfolding rate. Although rigidification of the Ala20 loop by introduction of proline did not result in stabilization, disturbance of the network of hydrogen bonds and hydrophobic interactions that interlock the proposed unfolding region dramatically destabilized the ribonuclease A molecule. [source] Generation and characterization of functional mutants in the translation initiation factor IF1 of Escherichia coliFEBS JOURNAL, Issue 3 2004Victor Croitoru Three protein factors IF1, IF2 and IF3 are involved in the initiation of translation in prokaryotes. No clear function has been assigned to the smallest of these three factors, IF1. Therefore, to investigate the role of this protein in the initiation process in Escherichia coli we have mutated the corresponding gene infA. Because IF1 is essential for cell viability and no mutant selection has so far been described, the infA gene in a plasmid was mutated by site-directed mutagenesis in a strain with a chromosomal infA+ gene, followed by deletion of this infA+ gene. Using this approach, the six arginine residues of IF1 were altered to leucine or aspartate. Another set of plasmid-encoded IF1 mutants with a cold-sensitive phenotype was collected using localized random mutagenesis. All mutants with a mutated infA gene on a plasmid and a deletion of the chromosomal infA copy were viable, except for an R65D alteration. Differences in growth phenotypes of the mutants were observed in both minimal and rich media. Some of the mutated infA genes were successfully recombined into the chromosome thereby replacing the wild-type infA+ allele. Several of these recombinants showed reduced growth rate and a partial cold-sensitive phenotype. This paper presents a collection of IF1 mutants designed for in vivo and in vitro studies on the function of IF1. [source] Deamidation of labile asparagine residues in the autoregulatory sequence of human phenylalanine hydroxylaseFEBS JOURNAL, Issue 5 2003Structural, functional implications Two dimensional electrophoresis has revealed a microheterogeneity in the recombinant human phenylalanine hydroxylase (hPAH) protomer, that is the result of spontaneous nonenzymatic deamidations of labile asparagine (Asn) residues [Solstad, T. and Flatmark, T. (2000) Eur. J. Biochem.267, 6302,6310]. Using of a computer algorithm, the relative deamidation rates of all Asn residues in hPAH have been predicted, and we here verify that Asn32, followed by a glycine residue, as well as Asn28 and Asn30 in a loop region of the N-terminal autoregulatory sequence (residues 19,33) of wt-hPAH, are among the susceptible residues. First, on MALDI-TOF mass spectrometry of the 24 h expressed enzyme, the E. coli 28-residue peptide, L15,K42 (containing three Asn residues), was recovered with four monoisotopic mass numbers (i.e., m/z of 3106.455, 3107.470, 3108.474 and 3109.476, of decreasing intensity) that differed by 1 Da. Secondly, by reverse-phase chromatography, isoaspartyl (isoAsp) was demonstrated in this 28-residue peptide by its methylation by protein- l -isoaspartic acid O -methyltransferase (PIMT; EC 2.1.1.77). Thirdly, on incubation at pH 7.0 and 37 °C of the phosphorylated form (at Ser16) of this 28-residue peptide, a time-dependent mobility shift from tR,,34 min to ,,31 min (i.e., to a more hydrophilic position) was observed on reverse-phase chromatography, and the recovery of the tR,,34 min species decreased with a biphasic time-course with t0.5 -values of 1.9 and 6.2 days. The fastest rate is compatible with the rate determined for the sequence-controlled deamidation of Asn32 (in a pentapeptide without 3D structural interference), i.e., a deamidation half-time of ,,1.5 days in 150 mm Tris/HCl, pH 7.0 at 37 °C. Asn32 is located in a cluster of three Asn residues (Asn28, Asn30 and Asn32) of a loop structure stabilized by a hydrogen-bond network. Deamidation of Asn32 introduces a negative charge and a partial ,-isomerization (isoAsp), which is predicted to result in a change in the backbone conformation of the loop structure and a repositioning of the autoregulatory sequence and thus affect its regulatory properties. The functional implications of this deamidation was further studied by site-directed mutagenesis, and the mutant form (Asn32,Asp) revealed a 1.7-fold increase in the catalytic efficiency, an increased affinity and positive cooperativity of L-Phe binding as well as substrate inhibition. [source] Loss-of-function variants of the human melanocortin-1 receptor gene in melanoma cells define structural determinants of receptor functionFEBS JOURNAL, Issue 24 2002Jesús Sánchez Más The ,-melanocyte-stimulating hormone (,MSH) receptor (MC1R) is a major determinant of mammalian skin and hair pigmentation. Binding of ,MSH to MC1R in human melanocytes stimulates cell proliferation and synthesis of photoprotective eumelanin pigments. Certain MC1R alleles have been associated with increased risk of melanoma. This can be theoretically considered on two grounds. First, gain-of-function mutations may stimulate proliferation, thus promoting dysplastic lesions. Second, and opposite, loss-of-function mutations may decrease eumelanin contents, and impair protection against the carcinogenic effects of UV light, thus predisposing to skin cancers. To test these possibilities, we sequenced the MC1R gene from seven human melanoma cell (HMC) lines and three giant congenital nevus cell (GCNC) cultures. Four HMC lines and two GCNC cultures contained MC1R allelic variants. These were the known loss-of-function Arg142His and Arg151Cys alleles and a new variant, Leu93Arg. Moreover, impaired response to a superpotent ,MSH analog was demonstrated for the cell line carrying the Leu93Arg allele and for a HMC line homozygous for wild-type MC1R. Functional analysis in heterologous cells stably or transiently expressing this variant demonstrated that Leu93Arg is a loss-of-function mutation abolishing agonist binding. These results, together with site-directed mutagenesis of the vicinal Glu94, demonstrate that the MC1R second transmembrane fragment is critical for agonist binding and maintenance of a resting conformation, whereas the second intracellular loop is essential for coupling to the cAMP system. Therefore, loss-of-function, but not activating MC1R mutations are common in HMC. Their study provides important clues to understand MC1R structure-function relationships. [source] Potential active-site residues in polyneuridine aldehyde esterase, a central enzyme of indole alkaloid biosynthesis, by modelling and site-directed mutagenesisFEBS JOURNAL, Issue 12 2002Emine Mattern-Dogru In the biosynthesis of the antiarrhythmic alkaloid ajmaline, polyneuridine aldehyde esterase (PNAE) catalyses a central reaction by transforming polyneuridine aldehyde into epi-vellosimine, which is the immediate precursor for the synthesis of the ajmalane skeleton. The PNAE cDNA was previously heterologously expressed in E. coli. Sequence alignments indicated that PNAE has a 43% identity to a hydroxynitrile lyase from Hevea brasiliensis, which is a member of the ,/, hydrolase superfamily. The catalytic triad, which is typical for this family, is conserved. By site-directed mutagenesis, the members of the catalytic triad were identified. For further detection of the active residues, a model of PNAE was constructed based on the X-ray crystallographic structure of hydroxynitrile lyase. The potential active site residues were selected on this model, and were mutated in order to better understand the relationship of PNAE with the ,/, hydrolases, and as well its mechanism of action. The results showed that PNAE is a novel member of the ,/, hydrolase enzyme superfamily. [source] Structural and functional studies of cinnamomin, a new type II ribosome-inactivating protein isolated from the seeds of the camphor treeFEBS JOURNAL, Issue 22 2001Liang Xie Cinnamomin is a new type II ribosome-inactivating protein (RIP). Its A-chain exhibits RNA N -glycosidase activity to inactivate the ribosome and thus inhibit protein synthesis, whereas the glycosylated B-chain is a lectin. The primary structure of cinnamomin, which exhibits approximately 55% identity with those of ricin and abrin, was deduced from the nucleotide sequences of cDNAs of cinnamomin A- and B-chains. It is composed of a total of 549 amino-acid residues: 271 residues in the A-chain, a 14-residue linker and 264 residues in the B-chain. To explore its biological function, the cinnamomin A-chain was expressed in Escherichia coli with a yield of 100 mg per L of culture, and purified through two-step column chromatography. After renaturation, the recovery of the enzyme activity of the expressed A-chain was 80% of that of native A-chain. Based on the modeling of the three-dimensional structure of the A-chain, the functional roles of five amino acids and the only cysteine residues were investigated by site-directed mutagenesis or chemical modification. The conserved single mutation of the five amino-acid residues led to 8,50-fold losses of enzymatic activity, suggesting that these residues were crucial for maintaining the RNA N -glycosidase activity of the A-chain. Most interestingly, the strong electric charge introduced at the position of the single cysteine in A-chain seemed to play a role in enzyme/substrate binding. [source] Conversion of a glutamate dehydrogenase into methionine/norleucine dehydrogenase by site-directed mutagenesisFEBS JOURNAL, Issue 22 2001Xing-Guo Wang In earlier attempts to shift the substrate specificity of glutamate dehydrogenase (GDH) in favour of monocarboxylic amino-acid substrates, the active-site residues K89 and S380 were replaced by leucine and valine, respectively, which occupy corresponding positions in leucine dehydrogenase. In the GDH framework, however, the mutation S380V caused a steric clash. To avoid this, S380 has been replaced with alanine instead. The single mutant S380A and the combined double mutant K89L/S380A were satisfactorily overexpressed in soluble form and folded correctly as hexameric enzymes. Both were purified successfully by Remazol Red dye chromatography as routinely used for wild-type GDH. The S380A mutant shows much lower activity than wild-type GDH with glutamate. Activities towards monocarboxylic substrates were only marginally altered, and the pH profile of substrate specificity was not markedly altered. In the double mutant K89L/S380A, activity towards glutamate was undetectable. Activity towards l -methionine, l -norleucine and l -norvaline, however, was measurable at pH 7.0, 8.0 and 9.0, as for wild-type GDH. Ala163 is one of the residues that lines the binding pocket for the side chain of the amino-acid substrate. To explore its importance, the three mutants A163G, K89L/A163G and K89L/S380A/A163G were constructed. All three were abundantly overexpressed and showed chromatographic behaviour identical with that of wild-type GDH. With A163G, glutamate activity was lower at pH 7.0 and 8.0, but by contrast higher at pH 9.0 than with wild-type GDH. Activities towards five aliphatic amino acids were remarkably higher than those for the wild-type enzyme at pH 8.0 and 9.0. In addition, the mutant A163G used l -aspartate and l -leucine as substrates, neither of which gave any detectable activity with wild-type GDH. Compared with wild-type GDH, the A163 mutant showed lower catalytic efficiencies and higher Km values for glutamate/2-oxoglutarate at pH 7.0, but a similar kcat/Km value and lower Km at pH 8.0, and a nearly 22-fold lower S0.5 (substrate concentration giving half-saturation under conditions where Michaelis,Menten kinetics does not apply) at pH 9.0. Coupling the A163G mutation with the K89L mutation markedly enhanced activity (100,1000-fold) over that of the single mutant K89L towards monocarboxylic amino acids, especially l -norleucine and l -methionine. The triple mutant K89L/S380A/A163G retained a level of activity towards monocarboxylic amino acids similar to that of the double mutant K89L/A163G, but could no longer use glutamate as substrate. In terms of natural amino-acid substrates, the triple mutant represents effective conversion of a glutamate dehydrogenase into a methionine dehydrogenase. Kinetic parameters for the reductive amination reaction are also reported. At pH 7 the triple mutant and K89L/A163G show 5 to 10-fold increased catalytic efficiency, compared with K89L, towards the novel substrates. In the oxidative deamination reaction, it is not possible to estimate kcat and Km separately, but for reductive amination the additional mutations have no significant effect on kcat at pH 7, and the increase in catalytic efficiency is entirely attributable to the measured decrease in Km. At pH 8 the enhancement of catalytic efficiency with the novel substrates was much more striking (e.g. for norleucine ,,2000-fold compared with wild-type or the K89L mutant), but it was not established whether this is also exclusively due to more favourable Michaelis constants. [source] Evidence of a functional requirement for a carbamoylated lysine residue in MurD, MurE and MurF synthetases as established by chemical rescue experimentsFEBS JOURNAL, Issue 22 2001Sébastien Dementin Enzymes MurD, MurE, MurF, folylpolyglutamate synthetase and cyanophycin synthetase, which belong to the Mur synthetase superfamily, possess an invariant lysine residue (K198 in the Escherichia coli MurD numbering). Crystallographic analysis of MurD and MurE has recently shown that this residue is present as a carbamate derivative, a modification presumably essential for Mg2+ binding and acyl phosphate formation. In the present work, the importance of the carbamoylated residue was investigated in MurD, MurE and MurF by site-directed mutagenesis and chemical rescue experiments. Mutant proteins MurD K198A/F, MurE K224A and MurF K202A, which displayed low enzymatic activity, were rescued by incubation with short-chain carboxylic acids, but not amines. The best rescuing agent was acetate for MurD K198A, formate for K198F, and propionate for MurE K224A and MurF K202A. In the last of these, wild-type levels of activity were recovered. A complementarity between the volume of the residue replacing lysine and the length of the carbon chain of the acid was noted. These observations support a functional role for the carbamate in the three Mur synthetases. Experiments aimed at recovering an active enzyme by introducing an acidic residue in place of the invariant lysine residue were also undertaken. Mutant protein MurD K198E was weakly active and was rescued by formate, indicating the necessity of correct positioning of the acidic function with respect to the peptide backbone. Attempts at covalent rescue of mutant protein MurD K198C failed because of its lack of reactivity towards haloacids. [source] Analysis of Usp DNA binding domain targeting reveals critical determinants of the ecdysone receptor complex interaction with the response elementFEBS JOURNAL, Issue 13 2001Iwona Grad The steroid hormone, 20-hydroxyecdysone (20E), directs Drosophila metamorphosis via a heterodimeric receptor formed by two members of the nuclear hormone receptors superfamily, the product of the EcR (EcR) and of the ultraspiracle (Usp) genes. Our previous study [Niedziela-Majka, A., Kochman, M., O,yhar, A. (2000) Eur. J. Biochem.267, 507,519] on EcR and Usp DNA-binding domains (EcRDBD and UspDBD, respectively) suggested that UspDBD may act as a specific anchor that preferentially binds the 5, half-site of the pseudo-palindromic response element from the hsp27 gene promoter and thus locates the heterocomplex in the defined orientation. Here, we analyzed in detail the determinants of the UspDBD interaction with the hsp27 element. The roles of individual amino acids in the putative DNA recognition , helix and the roles of the base pairs of the UspDBD target sequence have been probed by site-directed mutagenesis. The results show how the hsp27 element specifies UspDBD binding and thus the polar assembly of the UspDBD/EcRDBD heterocomplex. It is suggested how possible nucleotide deviations within the 5, half-site of the element may be used for the fine-tuning of the 20E-response element specificity and consequently the physiological response. [source] Structural consequences of site-directed mutagenesis in flexible protein domainsFEBS JOURNAL, Issue 8 200156)S mutant of RhoGDI, NMR characterization of the L(5 The guanine dissociation inhibitor RhoGDI consists of a folded C-terminal domain and a highly flexible N-terminal region, both of which are essential for biological activity, that is, inhibition of GDP dissociation from Rho GTPases, and regulation of their partitioning between membrane and cytosol. It was shown previously that the double mutation L55S/L56S in the flexible region of RhoGDI drastically decreases its affinity for Rac1. In the present work we study the effect of this double mutation on the conformational and dynamic properties of RhoGDI, and describe the weak interaction of the mutant with Rac1 using chemical shift mapping. We show that the helical content of the region 45,56 of RhoGDI is greatly reduced upon mutation, thus increasing the entropic penalty for the immobilization of the helix, and contributing to the loss of binding. In contrast to wild-type RhoGDI, no interaction with Rac1 could be identified for amino-acid residues of the flexible domain of the mutant RhoGDI and only very weak binding was observed for the folded domain of the mutant. The origins of the effect of the L55S/L56S mutation on the binding constant (decreased by at least three orders of magnitude relative to wild-type) are discussed with particular reference to the flexibility of this part of the protein. [source] Identification of catalytically important residues in the active site of Escherichia coli transaldolaseFEBS JOURNAL, Issue 8 2001Ulrich Schörken The roles of invariant residues at the active site of transaldolase B from Escherichia coli have been probed by site-directed mutagenesis. The mutant enzymes D17A, N35A, E96A, T156A, and S176A were purified from a talB -deficient host and analyzed with respect to their 3D structure and kinetic behavior. X-ray analysis showed that side chain replacement did not induce unanticipated structural changes in the mutant enzymes. Three mutations, N35A, E96A, and T156A resulted mainly in an effect on apparent kcat, with little changes in apparent Km values for the substrates. Residues N35 and T156 are involved in the positioning of a catalytic water molecule at the active site and the side chain of E96 participates in concert with this water molecule in proton transfer during catalysis. Substitution of Ser176 by alanine resulted in a mutant enzyme with 2.5% residual activity. The apparent Km value for the donor substrate, fructose 6-phosphate, was increased nearly fivefold while the apparent Km value for the acceptor substrate, erythrose 4-phosphate remained unchanged, consistent with a function for S176 in the binding of the C1 hydroxyl group of the donor substrate. The mutant D17A showed a 300-fold decrease in kcat, and a fivefold increase in the apparent Km value for the acceptor substrate erythrose 4-phosphate, suggesting a role of this residue in carbon,carbon bond cleavage and stabilization of the carbanion/enamine intermediate. [source] Analysis of the thyrotropin-releasing hormone-degrading ectoenzyme by site-directed mutagenesis of cysteine residuesFEBS JOURNAL, Issue 9 2000Cys68 is involved in disulfide-linked dimerization Thyrotropin-releasing hormone-degrading ectoenzyme is a member of the M1 family of Zn-dependent aminopeptidases and catalyzes the degradation of thyrotropin-releasing hormone (TRH; Glp-His-Pro-NH2). Cloning of the cDNA of this enzyme and biochemical studies revealed that the large extracellular domain of the enzyme with the catalytically active site contains nine cysteine residues that are highly conserved among species. To investigate the functional role of these cysteines in TRH-DE we used a site-directed mutagenesis approach and replaced individually each cysteine by a serine residue. The results revealed that the proteolytically truncated and enzymatically fully active enzyme consists of two identical subunits that are associated noncovalently by protein,protein interactions but not via interchain S-S bridges. The eight cysteines contained within this region are all important for the structure of the individual subunit and the enzymatic activity, which is dramatically reduced in all mutant enzymes. This is even true for the four cysteines that are clustered within the C-terminal domain remote from the Zn-binding consensus sequence HEICH. In contrast, Cys68, which resides within the stalk region seven residues from the end of the hydrophobic membrane-spanning domain, can be replaced by serine without a significant change in the enzymatic activity. Interestingly, this residue is involved in the formation of an interchain disulfide bridge. Covalent dimerization of the subunits, however, does not seem to be essential for efficient biosynthesis, enzymatic activity and trafficking to the cell surface. [source] Characterization of active-site mutants of Schizosaccharomyces pombe phosphoglycerate mutaseFEBS JOURNAL, Issue 24 2000Elucidation of the roles of amino acids involved in substrate binding, catalysis The roles of a number of amino acids present at the active site of the monomeric phosphoglycerate mutase from the fission yeast Schizosaccharomyces pombe have been explored by site-directed mutagenesis. The amino acids examined could be divided broadly into those presumed from previous related structural studies to be important in the catalytic process (R14, S62 and E93) and those thought to be important in substrate binding (R94, R120 and R121). Most of these residues have not previously been studied by site-directed mutagenesis. All the mutants except R14 were expressed in an engineered null strain of Saccharomyces cerevisiae (S150-gpm::HIS) in good yield. The R14Q mutant was expressed in good yield in the transformed AH22 strain of S. cerevisiae. The S62A mutant was markedly unstable, preventing purification. The various mutants were purified to homogeneity and characterized in terms of kinetic parameters, CD and fluorescence spectra, stability towards denaturation by guanidinium chloride, and stability of phosphorylated enzyme intermediate. In addition, the binding of substrate (3-phosphoglycerate) to wild-type, E93D and R120,121Q enzymes was measured by isothermal titration calorimetry. The results provide evidence for the proposed roles of each of these amino acids in the catalytic cycle and in substrate binding, and will support the current investigation of the structure and dynamics of the enzyme using multidimensional NMR techniques. [source] Identification of a triad of arginine residues in the active site of the ArsC arsenate reductase of plasmid R773FEMS MICROBIOLOGY LETTERS, Issue 2 2003Jin Shi Abstract ArsC from plasmid R773 catalyzes reduction of arsenate in Escherichia coli. Arg-60, Arg-94 and Arg-107 are near the active site residue Cys-12, suggesting that they form an anion binding pocket in the active site and/or participate in catalysis. These three arginine residues were altered to a variety of other residues by site-directed mutagenesis. Only mutants with arginine-to-lysine substitutions conferred arsenate resistance in vivo, although purified R60A, R60E, R60K exhibited varying levels of enzymatic activity. The data support the hypothesis that this triad of arginine residues is involved in arsenate binding and transition-state stabilization. [source] N-terminal CFTR missense variants severely affect the behavior of the CFTR chloride channel,HUMAN MUTATION, Issue 5 2008G.G. Gené Abstract Over 1,500 cystic fibrosis transmembrane conductance regulator (CFTR) gene sequence variations have been identified in patients with cystic fibrosis (CF) and related disorders involving an impaired function of the CFTR chloride channel. However, detailed structure,function analyses have only been established for a few of them. This study aimed evaluating the impact of eight N-terminus CFTR natural missense changes on channel behavior. By site-directed mutagenesis, we generated four CFTR variants in the N-terminal cytoplasmic tail (p.P5L, p.S50P, p.E60K, and p.R75Q) and four in the first transmembrane segment of membrane-spanning domain 1 (p.G85E/V, p.Y89C, and p.E92K). Immunoblot analysis revealed that p.S50P, p.E60K, p.G85E/V, and p.E92K produced only core-glycosylated proteins. Immunofluorescence and whole cell patch-clamp confirmed intracellular retention, thus reflecting a defect of CFTR folding and/or trafficking. In contrast, both p.R75Q and p.Y89C had a glycosylation pattern and a subcellular distribution comparable to the wild-type CFTR, while the percentage of mature p.P5L was considerably reduced, suggesting a major biogenesis flaw on this channel. Nevertheless, whole-cell chloride currents were recorded for all three variants. Single-channel patch-clamp analyses revealed that the channel activity of p.R75Q appeared similar to that of the wild-type CFTR, while both p.P5L and p.Y89C channels displayed abnormal gating. Overall, our results predict a major impact of the CFTR missense variants analyzed, except p.R75Q, on the CF phenotype and highlight the importance of the CFTR N-terminus on channel physiology. Hum Mutat 29(5), 738,749, 2008. © 2008 Wiley-Liss, Inc. [source] Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenaseJOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2010B. Sashidhar Summary Microbial biodiversity in the soil plays a significant role in metabolism of complex molecules, helps in plant nutrition and offers countless new genes, biochemical pathways, antibiotics and other metabolites, useful molecules for agronomic productivity. Phosphorus being the second most important macro-nutrient required by the plants, next to nitrogen, its availability in soluble form in the soils is of great importance in agriculture. Microbes present in the soil employ different strategies to make use of unavailable forms of phosphate and in turn also help plants making phosphate available for plant use. Azotobacter, a free-living nitrogen fixer, is known to increase the fertility of the soil and in turn the productivity of different crops. The glucose dehydrogenase gene, the first enzyme in the direct oxidation pathway, contributes significantly to mineral phosphate solubilization ability in several Gram-negative bacteria. It is possible to enhance further the biofertilizer potential of plant growth-promoting rhizobacteria by introducing the genes involved mineral phosphate solubilization without affecting their ability to fix nitrogen or produce phytohormones for dual benefit to agricultural crops. Glucose dehydrogenases from Gram-negative bacteria can be engineered to improve their ability to use different substrates, function at higher temperatures and EDTA tolerance, etc., through site-directed mutagenesis. [source] Carboxypeptidase Z (CPZ) Links Thyroid Hormone and Wnt Signaling Pathways in Growth Plate Chondrocytes,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2009Lai Wang Abstract Carboxypeptidase Z (CPZ) removes carboxyl-terminal basic amino acid residues, particularly arginine residues, from proteins. CPZ contains a cysteine-rich domain (CRD) similar to the CRD found in the frizzled family of Wnt receptors. We have previously shown that thyroid hormone regulates terminal differentiation of growth plate chondrocytes through activation of Wnt-4 expression and Wnt/,-catenin signaling. The Wnt-4 protein contains a C-terminal arginine residue and binds to CPZ through the CRD. The objective of this study was to determine whether CPZ modulates Wnt/,-catenin signaling and terminal differentiation of growth plate chondrocytes. Our results show that CPZ and Wnt-4 mRNA are co-expressed throughout growth plate cartilage. In primary pellet cultures of rat growth plate chondrocytes, thyroid hormone increases both Wnt-4 and CPZ expression, as well as CPZ enzymatic activity. Knockdown of either Wnt-4 or CPZ mRNA levels using an RNA interference technique or blocking CPZ enzymatic activity with the carboxypeptidase inhibitor GEMSA reduces the thyroid hormone effect on both alkaline phosphatase activity and Col10a1 mRNA expression. Adenoviral overexpression of CPZ activates Wnt/,-catenin signaling and promotes the terminal differentiation of growth plate cells. Overexpression of CPZ in growth plate chondrocytes also removes the C-terminal arginine residue from a synthetic peptide consisting of the carboxyl-terminal 16 amino acids of the Wnt-4 protein. Removal of the C-terminal arginine residue of Wnt-4 by site-directed mutagenesis enhances the positive effect of Wnt-4 on terminal differentiation. These data indicate that thyroid hormone may regulate terminal differentiation of growth plate chondrocytes in part by modulating Wnt signaling pathways through the induction of CPZ and subsequent CPZ-enhanced activation of Wnt-4. [source] CLONING AND SEQUENCING OF THE ,-AMYLASE GENE FROM BACILLUS SUBTILIS US116 STRAIN ENCODING AN ENZYME CLOSELY IDENTICAL TO THAT FROM BACILLUS AMYLOLIQUEFACIENS BUT DISTINCT IN THERMAL STABILITYJOURNAL OF FOOD BIOCHEMISTRY, Issue 2 2010EZZEDINE BEN MESSAOUD ABSTRACT The gene encoding for the ,-amylase AMYUS116 was cloned and sequenced. The amino acid sequence of AMYUS116 exhibited an almost perfect homology with the ,-amylase BACAAM, excluding the residues N205 and N217 of AMYUS116 that were changed to H205 and I217 into BACAAM. Three mutant derivatives from AMYUS116 (N205H, N217I and N205H/N217I) were created by site-directed mutagenesis and their physicochemical and kinetic properties were compared with those of the wild-type enzymes. Therefore, the undertaken amylases mainly generated maltohexaose from starch and had radically the same kinetic parameters and optimum pH and temperature. They, however, were significantly distinct in thermal stability; AMYUS116 was more thermosensible as its half-life time at 80C was 13 min, while those of BACAAM and the double mutant were likewise 38 min. The single-mutant amylases exhibited an identically intermediate thermal stability as their half-life times at 80C were roughly 22 min. PRACTICAL APPLICATIONS Of particular interest to the current search is that the different thermal stability between AMYUS116 and BACAAM can lead to novel findings pertaining to protein stability, which can bring about new strategies for protein engineering. Basically, the comparative study of closely related amylases and the protein engineering of already existing ones are certainly important because they offer opportunities to understand the structure,function relationships of these biocatalysts. [source] Sp proteins play a critical role in histone deacetylase inhibitor-mediated derepression of CYP46A1 gene transcriptionJOURNAL OF NEUROCHEMISTRY, Issue 2 2010Maria Joăo Nunes J. Neurochem. (2010) 113, 418,431. Abstract We investigated whether the CYP46A1 gene, a neuronal-specific cytochrome P450, responsible for the majority of brain cholesterol turnover, is subject to transcriptional modulation through modifications in histone acetylation. We demonstrated that inhibition of histone deacetylase activity by trichostatin A (TSA), valproic acid and sodium butyrate caused a potent induction of both CYP46A1 promoter activity and endogenous expression. Silencing of Sp transcription factors through specific small interfering RNAs, or impairing Sp binding to the proximal promoter, by site-directed mutagenesis, led to a significant decrease in TSA-mediated induction of CYP46A1 expression/promoter activity. Electrophoretic mobility shift assay, DNA affinity precipitation assays and chromatin immunoprecipitation assays were used to determine the multiprotein complex recruited to the CYP46A1 promoter, upon TSA treatment. Our data showed that a decrease in Sp3 binding at particular responsive elements, can shift the Sp1/Sp3/Sp4 ratio, and favor the detachment of histone deacetylase (HDAC) 1 and HDAC2 and the recruitment of p300/CBP. Moreover, we observed a dynamic change in the chromatin structure upon TSA treatment, characterized by an increase in the local recruitment of euchromatic markers and RNA polymerase II. Our results show the critical participation of an epigenetic program in the control of CYP46A1 gene transcription, and suggest that brain cholesterol catabolism may be affected upon treatment with HDAC inhibitors. [source] |