Single Neurons (single + neuron)

Distribution by Scientific Domains


Selected Abstracts


Single neuron burst firing in the human hippocampus during sleep

HIPPOCAMPUS, Issue 6 2002
Richard J. Staba
Abstract Although there are numerous non-primate studies of the single neuron correlates of sleep-related hippocampal EEG patterns, very limited hippocampal neuronal data are available for correlation with human sleep. We recorded human hippocampal single neuron activity in subjects implanted with depth electrodes required for medical diagnosis and quantitatively evaluated discharge activity from each neuron during episodes of wakefulness (Aw), combined stage 3 and 4 slow-wave sleep (SWS), and rapid eye movement (REM) sleep. The mean firing rate of the population of single neurons was significantly higher during SWS and Aw compared with REM sleep (p = 0.002; p < 0.0001). In addition, burst firing was significantly greater during SWS compared with Aw (p = 0.001) and REM sleep (p < 0.0001). The synchronized state of SWS and associated high-frequency burst discharge found in human hippocampus may subserve functions similar to those reported in non-primate hippocampus that require burst firing to induce synaptic modifications in hippocampal circuitry and in hippocampal projections to neocortical targets that participate in memory consolidation. Hippocampus 2002;12:724,734. © 2002 Wiley-Liss, Inc. [source]


Flexible modelling of neuron firing rates across different experimental conditions: an application to neural activity in the prefrontal cortex during a discrimination task

JOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES C (APPLIED STATISTICS), Issue 4 2006
Carmen Cadarso-Suárez
Summary., In many electrophysiological experiments the main objectives include estimation of the firing rate of a single neuron, as well as a comparison of its temporal evolution across different experimental conditions. To accomplish these two goals, we propose a flexible approach based on the logistic generalized additive model including condition-by-time interactions. If an interaction of this type is detected in the model, we then establish that the use of the temporal odds ratio curves is very useful in discriminating between the conditions under which the firing probability is higher. Bootstrap techniques are used for testing for interactions and constructing pointwise confidence bands for the true odds ratio curves. Finally, we apply the new methodology to assessing relationships between neural response and decision-making in movement-selective neurons in the prefrontal cortex of behaving monkeys. [source]


Diagnostic clues and more from photographs

NEUROPATHOLOGY, Issue 1 2007
Asao Hirano
During over 50 years of the first author's career in neuropathology at Montefiore Medical Center in New York, we have come across certain interesting neuropathological findings. In this communication, some photographs showing macroscopic, microscopic and electron microscopic significant findings are selected to illustrate usefulness not only for the diagnosis but also for understanding of the nervous system. The six topics presented in this paper are: (i) unattached presynaptic terminals in cerebellar neuroblastoma; (ii) neurofibrillary tangle formation in the nucleus basalis of Meynert ipsilateral to a massive cerebral infarct; (iii) orderly arrangement of tumor cells in leptomeningeal carcinomatosis; (iv) interface between craniopharyngioma and brain tissue; (v) neurofibrillary tangles and Lewy bodies in a single neuron; and (vi) Cu/Zn superoxide dismutase positive Lewy body-like hyaline inclusions in anterior horn cells in familial motor neuron diseases. Analyses of these findings are presented for an educational purpose. [source]


Application of Penalized Splines in Analyzing Neuronal Data

BIOMETRICAL JOURNAL, Issue 1 2009
John T. Maringwa
Abstract Neuron experiments produce high-dimensional data structures. Therefore, application of smoothing techniques in the analysis of neuronal data from electrophysiological experiments has received considerable attention of late. We investigate the use of penalized splines in the analysis of neuronal data. This is first illustrated when interested in the temporal trend of a single neuron. An approach to investigate the maximal firing rate, based on the penalizedspline model is proposed. Determination of the time of maximal firing rate is based on non-linear optimization of the objective function with the corresponding confidence intervals constructed based on the first-order derivative function. To distinguish between the curves from different experimental conditions in a moment-by-moment sense, bias adjusted simulation-based simultaneous confidence bands leading to global inference in the time domain are constructed. The bands are an extension of the approach proposed by Ruppert et al. (2003). These methods are in a second step extended towards the analysis of a population of neurons via a marginal or population-averaged model (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Visualizing neurons one-by-one in vivo: Optical dissection and reconstruction of neural networks with reversible fluorescent proteins

DEVELOPMENTAL DYNAMICS, Issue 8 2006
Shinsuke Aramaki
Abstract A great many axons and dendrites intermingle to fasciculate, creating synapses as well as glomeruli. During live imaging in particular, it is often impossible to distinguish between individual neurons when they are contiguous spatially and labeled in the same fluorescent color. In an attempt to solve this problem, we have taken advantage of Dronpa, a green fluorescent protein whose fluorescence can be erased with strong blue light, and reversibly highlighted with violet or ultraviolet light. We first visualized a neural network with fluorescent Dronpa using the Gal4-UAS system. During the time-lapse imaging of axonal navigation, we erased the Dronpa fluorescence entirely; re-highlighted it in a single neuron anterogradely from the soma or retrogradely from the axon; then repeated this procedure for other single neurons. After collecting images of several individual neurons, we then recombined them in multiple pseudo-colors to reconstruct the network. We have also successfully re-highlighted Dronpa using two-photon excitation microscopy to label individual cells located inside of tissues and were able to demonstrate visualization of a Mauthner neuron extending an axon. These "optical dissection" techniques have the potential to be automated in the future and may provide an effective means to identify gene function in morphogenesis and network formation at the single cell level. Developmental Dynamics 235:2192,2199, 2006. © 2006 Wiley-Liss, Inc. [source]


Seasonal changes in frequency tuning and temporal processing in single neurons in the frog auditory midbrain

DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2005
Jozien BM Goense
Abstract Frogs rely on acoustic signaling to detect, discriminate, and localize mates. In the temperate zone, reproduction occurs in the spring, when frogs emerge from hibernation and engage in acoustically guided behaviors. In response to the species mating call, males typically show evoked vocal responses or other territorial behaviors, and females show phonotactic responses. Because of their strong seasonal behavior, it is possible that the frog auditory system also displays seasonal variation, as evidenced in their vocal control system. This hypothesis was tested in male Northern leopard frogs by evaluating the response characteristics of single neurons in the torus semicircularis (TS; a homolog of the inferior colliculus) to a synthetic mating call at different times of the year. We found that TS neurons displayed a seasonal change in frequency tuning and temporal properties. Frequency tuning shifted from a predominance of TS units sensitive to intermediate frequencies (700,1200 Hz) in the winter, to low frequencies (100,600 Hz) in the summer. In winter and early spring, most TS neurons showed poor, or weak, time locking to the envelope of the amplitude-modulated synthetic call, whereas in late spring and early summer the majority of TS neurons showed robust time-locked responses. These seasonal differences indicate that neural coding by auditory midbrain neurons in the Northern leopard frog is subject to seasonal fluctuation. © 2005 Wiley Periodicals, Inc. J. Neurobiol, 2005 [source]


Tactile responses of hindpaw, forepaw and whisker neurons in the thalamic ventrobasal complex of anesthetized rats

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2008
J. Aguilar
Abstract The majority of studies investigating responses of thalamocortical neurons to tactile stimuli have focused on the whisker representation of the rat thalamus: the ventral,posterior,medial nucleus (VPM). To test whether the basic properties of thalamocortical responses to tactile stimuli could be extended to the entire ventrobasal complex, we recorded single neurons from the whisker, forepaw and hindpaw thalamic representations. We performed a systematic analysis of responses to stereotyped tactile stimuli , 500 ms pulses (i.e. ON,OFF stimuli) or 1 ms pulses (i.e. impulsive stimuli) , under two different anesthetics (pentobarbital or urethane). We obtained the following main results: (i) the tuning of cells to ON vs. OFF stimuli displayed a gradient across neurons, so that two-thirds of cells responded more to ON stimuli and one-third responded more to OFF stimuli; (ii) on average, response magnitudes did not differ between ON and OFF stimuli, whereas latencies of response to OFF stimuli were a few milliseconds longer; (iii) latencies of response to ON and OFF stimuli were highly correlated; (iv) responses to impulsive stimuli and ON stimuli showed a strong correlation, whereas the relationship between the responses to impulsive stimuli and OFF stimuli was subtler; (v) unlike ON responses, OFF responses did not decrease when stimuli were moved from the receptive field center to a close location in the excitatory surround. We obtained the same results for hindpaw, forepaw and whisker neurons. Our results support the view of a neurophysiologically homogeneous ventrobasal complex, in which OFF responses participate in the structure of the spatiotemporal receptive field of thalamocortical neurons for tactile stimuli. [source]


Mapping responses to frequency sweeps and tones in the inferior colliculus of house mice

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2003
Steffen R. Hage
Abstract In auditory maps of the primary auditory cortex, neural response properties are arranged in a systematic way over the cortical surface. As in the visual system, such maps may play a critical role in the representation of sounds for perception and cognition. By recording from single neurons in the central nucleus of the inferior colliculus (ICC) of the mouse, we present the first evidence for spatial organizations of parameters of frequency sweeps (sweep speed, upward/downward sweep direction) and of whole-field tone response patterns together with a map of frequency tuning curve shape. The maps of sweep speed, tone response patterns and tuning curve shape are concentrically arranged on frequency band laminae of the ICC with the representation of slow speeds, build up response types and sharp tuning mainly in the centre of a lamina, and all (including high) speeds, phasic response types and broad tuning mainly in the periphery. Representation of sweep direction shows preferences for upward sweeps medially and laterally and downward sweeps mainly centrally in the ICC (either striped or concentric map). These maps are compatible with the idea of a gradient of decreasing inhibition from the centre to the periphery of the ICC and by gradients of intrinsic neuronal properties (onset or sustained responding). The maps in the inferior colliculus compare favourably with corresponding maps in the primary auditory cortex, and we show how the maps of sweep speed and direction selectivity of the primary auditory cortex could be derived from the here-found maps of the inferior colliculus. [source]


Perirhinal cortex neuronal activity related to long-term familiarity memory in the macaque

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2003
Christian Hölscher
Abstract Lesion studies suggest that the perirhinal cortex plays a role in object recognition memory. To analyse its role, the activity of single neurons in the perirhinal cortex was recorded in three rhesus monkeys (Macaca mulatta) performing a delayed matching-to-sample task with up to three intervening stimuli. A set of familiar visual stimuli was used. Some neurons had activity related to working memory, in that they responded more to the sample than to the match image within a trial, as shown previously. However, when a novel set of stimuli was introduced, the neuronal responses were on average only 47% of the magnitude of the responses to the familiar set of stimuli. Moreover, it was shown in eight different replications in three monkeys that the responses of the perirhinal cortex neurons gradually increased over hundreds of presentations of the new set of (initially novel) stimuli to become as large as with the already familiar stimuli. The mean number of 1.3-s presentations to induce this effect was 400 occurring over 7,13 days. These results show that perirhinal cortex neurons represent the very long-term familiarity of visual stimuli. A representation of the long-term familiarity of visual stimuli may be important for many aspects of social behaviour, and part of the impairment in temporal lobe amnesia may be related to the difficulty of building representations of the degree of familiarity of stimuli. [source]


Single neuron burst firing in the human hippocampus during sleep

HIPPOCAMPUS, Issue 6 2002
Richard J. Staba
Abstract Although there are numerous non-primate studies of the single neuron correlates of sleep-related hippocampal EEG patterns, very limited hippocampal neuronal data are available for correlation with human sleep. We recorded human hippocampal single neuron activity in subjects implanted with depth electrodes required for medical diagnosis and quantitatively evaluated discharge activity from each neuron during episodes of wakefulness (Aw), combined stage 3 and 4 slow-wave sleep (SWS), and rapid eye movement (REM) sleep. The mean firing rate of the population of single neurons was significantly higher during SWS and Aw compared with REM sleep (p = 0.002; p < 0.0001). In addition, burst firing was significantly greater during SWS compared with Aw (p = 0.001) and REM sleep (p < 0.0001). The synchronized state of SWS and associated high-frequency burst discharge found in human hippocampus may subserve functions similar to those reported in non-primate hippocampus that require burst firing to induce synaptic modifications in hippocampal circuitry and in hippocampal projections to neocortical targets that participate in memory consolidation. Hippocampus 2002;12:724,734. © 2002 Wiley-Liss, Inc. [source]


Neuronal activity in the globus pallidus of multiple system atrophy patients

MOVEMENT DISORDERS, Issue 12 2004
Luiz C.M. Pereira MD
Abstract The pathophysiological changes in neural activity that characterize multiple system atrophy (MSA) are largely unknown. We recorded the activity of pallidal neurons in 3 patients with clinical and radiological features of MSA who underwent unilateral microelectrode-guided pallidotomy for disabling parkinsonism. Findings in these patients were compared with 4 control patients with a clinical diagnosis of Parkinson's disease (PD). The position, firing rates, and firing patterns of single neurons in the pallidal complex were analyzed in both MSA and PD patients. The mean spontaneous firing rate of neurons in the internal segment of the globus pallidus internus (GPii) was significantly lower in MSA than in PD patients. There were no significant differences between MSA and PD patients, however, in firing rates of neurons in the external globus pallidus (GPe) or in the external segment of GPi (GPie). In addition, no significant differences in firing pattern were found between MSA and PD patients. In conclusion, this study has shown that firing rates of neurons in GPii but not in GPie and GPe are different in MSA patients compared with that in PD patients, a finding that may reflect the poor clinical results of pallidotomy reported in patients with MSA. © 2004 Movement Disorder Society [source]


Neuronal control and monitoring of initiation of movements

MUSCLE AND NERVE, Issue 3 2002
Veit Stuphorn PhD
Abstract The prerequisite for behavioral self-control is the ability to initiate actions and to cancel planned actions. A rational choice about which action to initiate or to withhold must be informed by the consequences of prior actions. The neuronal correlates of these processes have been studied with the countermanding paradigm. This task requires subjects to withhold planned movements in response to an imperative stop signal, which they can do with varying success. By recording the activity of single neurons in different parts of the frontal cortex of macaque monkeys performing this task, signals that are sufficient for controlling the initiation and inhibition of movements and other signals that evaluate the consequences of these movements have been identified. © 2002 Wiley Periodicals, Inc. Muscle Nerve 26: 326,339, 2002 [source]


Developmental change in GABAA receptor desensitization kinetics and its role in synapse function in rat cortical neurons

THE JOURNAL OF PHYSIOLOGY, Issue 1 2000
Bruce Hutcheon
We examined the maturation of GABAA receptor synapses in cortical pyramidal neurons cultured from embryonic rats. The decay kinetics of GABAA receptor-mediated miniature postsynaptic currents (mPSCs) were compared with those of responses evoked by GABA in excised membrane patches. Fast perfusion of 1 or 10 mM GABA on membrane patches evoked currents with different desensitizing time courses in young and old neurons. For neurons older than 4 days in vitro (DIV), GABAA currents had a fast component of desensitization (median , 3 ms) seldom seen in patches from younger neurons. In contrast, mPSCs exhibited a substantial fast component of decay at 2,4 DIV that became more prominent with further development although the median value of its time constant remained unchanged. The selective ,3 subunit positive modulator SB-205384 had no effect on mPSCs at any time in vitro but potentiated extrasynaptic activity. This suggests that synapse maturation does not proceed by a gradual exchange of early embryonic GABAA receptor subforms for adult forms. At all ages, the kinetic properties of mPSCs were heterogeneous. This heterogeneity extended to the level of mPSCs from single neurons and may be a normal aspect of synaptic functioning. These results suggest that inhibitory synapses in developing neurons are capable of selectively capturing GABAA receptors having fast desensitization kinetics. This functional preference probably reflects the developmental turning point from an inwardly looking trophic capacity of embryonic GABAA receptors to a role concerned with information processing. [source]


Reverse correlation in neurophysiology

COGNITIVE SCIENCE - A MULTIDISCIPLINARY JOURNAL, Issue 2 2004
Dario Ringach
Abstract This article presents a review of reverse correlation in neurophysiology. We discuss the basis of reverse correlation in linear transducers and in spiking neurons. The application of reverse correlation to measure the receptive fields of visual neurons using white noise and m-sequences, and classical findings about spatial and color processing in the cortex resulting from such measurements, are emphasized. Finally, we describe new developments in reverse correlation, including "sub-space" and categorical reverse-correlation. Recent results obtained by applying such methods in the orientation, spatial-frequency and Fourier domains have revealed the importance of cortical inhibition in the establishment of sharp tuning selectivity in single neurons. [source]