Single Isomorphous Replacement (single + isomorphous_replacement)

Distribution by Scientific Domains


Selected Abstracts


Overview and new developments in softer X-ray (2Å < , < 5Å) protein crystallography

JOURNAL OF SYNCHROTRON RADIATION, Issue 1 2004
John R. Helliwell
New methodologies with synchrotron radiation and X-ray free electron lasers (XFELs) in structural biology are being developed. Recent trends in harnessing softer X-rays in protein crystallography for phase determination are described. These include reference to a data-collection test at 2.6 Å wavelength with a lysozyme crystal on SRS station 7.2 (Helliwell, 1983) and also use of softer X-rays (2,Å wavelength) to optimise f," at the xenon L1 absorption edge in the Single Isomorphous Replacement Optimised Anomalous Scattering ('SIROAS') structure determination of apocrustacyanin A1 with four, partially occupied, xenon atoms (Cianci et al., 2001; Chayen et al., 2000). The hand of the protein was determined using the f," enhanced sulphur anomalous signal from six disulphides in the protein dimer of 40,kDa. In a follow-up study the single wavelength xenon L1 -edge f," optimised data set alone was used for phase determination and phase improvement by solvent flattening etc. (CCP4 DM) (Olczak et al., 2003). Auto-tracing of the protein was feasible but required additional diffraction data at higher resolution. This latter could be avoided in future by using improved tilted detector settings during use of softer X-rays, i.e. towards back-scattering recording (Helliwell, 2002). The Olczak et al. study has already led to optimisation of the new SRS beamline MPW,MAD,10 (see www.nwsgc.ac.uk) firstly involving the thinning of the beryllium windows as much as possible and planning for a MAR Research tilted detector `desk top beamline' geometry. Thus the use of softer, i.e. 2 to 3,Å wavelength range, X-rays will allow optimisation of xenon and iodine L -edge f," and enhancing of sulphur f," signals for higher throughput protein crystallography. Softer X-rays utilisation in protein crystallography includes work done on SRS bending-magnet station 7.2 in the early 1980s by the author as station scientist (Helliwell, 1984). In the future development of XFELs these softer X-ray wavelengths could also be harnessed and relax the demands to some extent on the complexity and cost of an XFEL. Thus, by use of say 4,Å XFEL radiation and use of a back-scattering geometry area detector the single molecule molecular transform could be sampled to a spatial resolution of 2,Å, sufficient, in principle, for protein model refinement (Miao et al., 1999). Meanwhile, Miao et al. (2003) report the first experimental recording of the diffraction pattern from intact Escherichia coli bacteria using coherent X-rays, with a wavelength of 2,Å, at a resolution of 30,nm and a real-space image constructed. The new single-particle X-ray diffraction-imaging era has commenced. [source]


A multivariate likelihood SIRAS function for phasing and model refinement

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 10 2009
Pavol Skubák
A likelihood function based on the multivariate probability distribution of all observed structure-factor amplitudes from a single isomorphous replacement with anomalous scattering experiment has been derived and implemented for use in substructure refinement and phasing as well as macromolecular model refinement. Efficient calculation of a multidimensional integration required for function evaluation has been achieved by approximations based on the function's properties. The use of the function in both phasing and protein model building with iterative refinement was essential for successful automated model building in the test cases presented. [source]


Structure of the C-terminal domain of nsp4 from feline coronavirus

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 8 2009
Ioannis Manolaridis
Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26,31,kb) encodes 15,16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication,transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (,100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8,Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P43. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly ,-helical content displaying a unique fold that could be engaged in protein,protein interactions. [source]


Novel approach to phasing proteins: derivatization by short cryo-soaking with halides

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 2 2000
Zbigniew Dauter
A quick (less than 1,min) soak of protein crystals in a cryo-solution containing bromide or iodide anions leads to incorporation of these anomalous scatterers into the ordered solvent region around the protein molecules. These halide anions provide a convenient way of phasing through their anomalous scattering signal: bromides using multiwavelength anomalous dispersion (MAD) and bromides and/or iodides using single-wavelength anomalous dispersion (SAD) or single isomorphous replacement with anomalous scattering (SIRAS) methods. This approach has been tested successfully on four different proteins and has been used to solve the structure of a new protein of molecular weight 30,kDa. [source]


Purification, crystallization and X-ray diffraction analysis of pavine N -methyltransferase from Thalictrum flavum

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 11 2008
Ankur Jain
A cDNA from the plant Thalictrum flavum encoding pavine N -methyltransferase, an enzyme belonging to a novel class of S -adenosylmethionine-dependent N -methyltransferases specific for benzylisoquinoline alkaloids, has been heterologously expressed in Escherichia coli. The enzyme was purified using affinity and gel-filtration chromatography and was crystallized in space group P21. The structure was solved at 2.0,Å resolution using a xenon derivative and the single isomorphous replacement with anomalous scattering method. [source]


Crystallization and preliminary X-ray analysis of a novel Kunitz-type kallikrein inhibitor from Bauhinia bauhinioides

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 10 2005
Marcos Vicente de A. S. Navarro
A Kunitz-type protease inhibitor (BbKI) found in Bauhinia bauhinioides seeds has been overexpressed in Escherichia coli and crystallized at 293,K using PEG 4000 as the precipitant. X-ray diffraction data have been collected to 1.87,Å resolution using an in-house X-ray generator. The crystals of the recombinant protein (rBbKI) belong to the orthorhombic space group P212121, with unit-cell parameters a = 46.70, b = 64.14, c = 59.24,Å. Calculation of the Matthews coefficient suggests the presence of one monomer of rBbKI in the asymmetric unit, with a corresponding solvent content of 51% (VM = 2.5,Å3,Da,1). Iodinated crystals were prepared and a derivative data set was also collected at 2.1,Å resolution. Crystals soaked for a few seconds in a cryogenic solution containing 0.5,M NaI were found to be reasonably isomorphous to the native crystals. Furthermore, the presence of iodide anions could be confirmed in the NaI-derivatized crystal. Data sets from native and derivative crystals are being evaluated for use in crystal structure determination by means of the SIRAS (single isomorphous replacement with anomalous scattering) method. [source]


Crystallization of the glycogen-binding domain of the AMP-activated protein kinase , subunit and preliminary X-ray analysis

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 1 2005
Galina Polekhina
AMP-activated protein kinase (AMPK) is an intracellular energy sensor that regulates metabolism in response to energy demand and supply by adjusting the ATP-generating and ATP-consuming pathways. AMPK potentially plays a critical role in diabetes and obesity as it is known to be activated by metforin and rosiglitazone, drugs used for the treatment of type II diabetes. AMPK is a heterotrimer composed of a catalytic , subunit and two regulatory subunits, , and ,. Mutations in the , subunit are known to cause glycogen accumulation, leading to cardiac arrhythmias. Recently, a functional glycogen-binding domain (GBD) has been identified in the , subunit. Here, the crystallization of GBD in the presence of ,-cyclodextrin is reported together with preliminary X-ray data analysis allowing the determination of the structure by single isomorphous replacement and threefold averaging using in-house X-ray data collected from a selenomethionine-substituted protein. [source]