Home About us Contact | |||
Single Glass Transition Temperature (single + glass_transition_temperature)
Selected AbstractsThe totally miscible in ternary hydrogen-bonded polymer blend of poly(vinyl phenol)/phenoxy/phenolicJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2009Shiao-Wei KuoArticle first published online: 28 MAY 200 Abstract The individual binary polymer blends of phenolic/phenoxy, phenolic/poly(vinyl phenol) (PVPh), and phenoxy/PVPh have specific interaction through intermolecular hydrogen bonding of hydroxyl,hydroxyl group to form homogeneous miscible phase. In addition, the miscibility and hydrogen bonding behaviors of ternary hydrogen bond blends of phenolic/phenoxy/PVPh were investigated by using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy, and optical microscopy. According to the DSC analysis, every composition of the ternary blend shows single glass transition temperature (Tg), indicating that this ternary hydrogen-bonded blend is totally miscible. The interassociation equilibrium constant between each binary blend was calculated from the appropriate model compounds. The interassociation equilibrium constant (KA) of each individually binary blend is higher than any self-association equilibrium constant (KB), resulting in the hydroxyl group tending to form interassociation hydrogen bond. Photographs of optical microscopy show this ternary blend possess lower critical solution temperature (LCST) phase diagram. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Properties of soy protein isolate/poly(vinyl alcohol) blend "green" films: Compatibility, mechanical properties, and thermal stabilityJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008Jun-Feng Su Abstract Blend films from nature soy protein isolates (SPI) and synthetical poly(vinyl alcohol) (PVA) compatibilized by glycerol were successfully fabricated by a solution-casting method in this study. Properties of compatibility, mechanical properties, and thermal stability of SPI/PVA films were investigated based on the effect of the PVA concentration. XRD tests confirm that the SPI/PVA films were partially crystalline materials with peaks of 2, = 20°. And, the addition of glycerol will insert the crystalline structure and destroy the blend microstructure of SPI/PVA. Differential scanning calorimetry (DSC) tests show that SPI/PVA blend polymers have a single glass transition temperature (Tg) between 80 and 115.0°C, which indicate that SPI and PVA have good compatibility. The tension tests show that SPI/PVA films exhibit both higher tensile strength (,b) and percentage elongation at break point (P.E.B.). Thermogravimetric analysis (TGA) and water solubility tests show that SPI/PVA blend polymer has more stable stability than pure SPI. All the results reflect that SPI/PVA/glycerol blend film provides a convenient and promising way to prepare soy protein plastics for practical application. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Preparation and characterization of interpenetration polymer network films based on poly(vinyl alcohol) and poly(acrylic acid) for drug deliveryJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008Yu-Mei Yue Abstract A series of full interpenetrating polymer network (full-IPN) films of poly(acrylic acid) (PAA)/poly (vinyl alcohol) (PVA) were prepared by radical solution polymerization and sequential IPN technology. Attenuated total reflectance-Fourier transform infrared spectroscopy, swelling properties, mechanical properties, morphology, and glass transition temperature of the films were investigated. FTIR spectra analysis showed that new interaction hydrogen bonds between PVA and PAA were formed. Swelling property of the films in distilled water and different pH buffer solution was studied. Swelling ratio increased with increasing PAA content of IPN films in all media, and swelling ratio decreased with increasing PVA crosslink degree. Tensile strength and elongation at break related not only to the constitution of IPNs but also to the swelling ratio of IPNs. Mechanical property of glutaraldehyde (0.5%) for poly(vinyl alcohol) crosslinking was better than that of glutaraldehyde (1.0%). DSC of the IPN films showed only a single glass transition temperature (Tg) for each sample, and Tg data showed a linear relationship with network composition. Morphology was observed a homogeneous structure, indicating the good compatibility and miscibility between PAA and PVA. Potential application of the IPN films in controlled drug delivery was also examined using crystal violet as a model drug. The release rate of the drug was higher at 37°C than 25°C for all IPNs and also increased slightly with decreasing of poly(acrylic acid) content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Comparison of specific interactions in P4VP/PSCA and PS4VP/PSCA blends and complexesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008Naima Bouslah Abstract The compatibilization of an immiscible polymer system polystyrene/poly(4-vinylpyridine) has been induced by the introduction of carboxylic acid groups within the polystyrene chains. Poly(styrene- co -cinnamic acid), PSCA, copolymers were used to prepare blends and complexes with poly(4-vinylpyridine), P4VP, and in a second time with poly(styrene- co -4-vinylpyridine), PS4VP, copolymer in order to reduce the density of the interacting groups. The miscibility of the systems has been ascertained by DSC, which revealed that both blends and complexes exhibit a single glass transition temperature indicating their single phase nature. The Tgs of the complexes of PS4VP with PSCA15, containing 15 mol % of cinnamic acid content, were higher than those of the corresponding blends indicating that stronger interpolymer interactions were developed in the complexes. Furthermore, the application of the Kwei equation suggested that P4VP interacts more strongly with PSCA15 than does PS4VP. FTIR spectra revealed the development of hydrogen bonding within the PS4VP/PSCA system and both hydrogen bonding and ionic interaction in the P4VP/PSCA blends whereas the same interactions were expected in both systems. This observation confirmed the stronger ability of P4VP to interact with PSCA copolymer. The viscosimetric study showed both positive and negative deviations of the reduced viscosity of the blends from the additivity law confirming the presence of specific interactions within the blend solutions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Processability and characterization of poly(vinyl chloride)- b -poly(n -butyl acrylate)- b -poly(vinyl chloride) prepared by living radical polymerization of vinyl chloride.JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, Issue 4 2006Comparison with a flexible commercial resin formulation prepared with PVC, dioctyl phthalate This work reports the synthesis and processing of a new flexible material based on PVC produced by living radical polymerization. The synthesis was carried out in a two-step process. In the first step the macroinitiator ,, ,-di(iodo)poly(butyl acrylate) [,, ,-di(iodo)PBA] was synthesized in water by single electron transfer/degenerative chain transfer mediated living radical polymerization (SET-DTLRP) catalyzed by Na2S2O4. In the second step this macroinitiator was reinitiated by SET-DTLRP of vinyl chloride (VC), thereby leading to the formation of the block copolymer poly(vinyl chloride)- b -poly(butyl acrylate)- b -poly(vinyl chloride) [PVC- b -PBA- b -PVC]. This new material was processed on a laboratory scale. The DMTA traces showed only a single glass transition temperature, thus indicating that no phase segregation was present. The copolymers were studied with regard to their processing, miscibility, and mechanical properties. The first comparison with commercial formulations made with PVC and dioctyl phthalate (DOP) is presented. J. VINYL ADDIT. TECHNOL., 12:156,165, 2006. © 2006 Society of Plastics Engineers [source] Copolymerization of cyclopentadiene with styrene by methylaluminoxane catalyst,POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 7-8 2006Junxian Hou Abstract Random copolymerization of cyclopentadiene (CPD) and styrene initiated by methylaluminoxane was investigated. The copolymer was analyzed using FT-IR, 1H-NMR and differential scanning calorimetry (DSC). The reactivity ratios of the monomers were rCPD,=,19.53, rstyrene,=,0.60. A single glass transition temperature is observed for each copolymer, which is in agreement with a random type copolymer structure. And a cationic initiation mechanism was speculated based on the polymerization results. Copyright © 2006 John Wiley & Sons, Ltd. [source] |